Deblurring for the tripledifferential yield from Sn+Sn collision @ 270 AMeV

Jeonghyeok Park

Example of blurring and deblurring

Original

Blurred

Restored

Blurred Number Plates

Deblurred Number Plates

Forensic Image deblurring

Deblurring in Astronomy (ESA/Hubble)

(a)

Richardson-Lucy algorithm

P. Danielewicz, Phys. Rev. C 105 034608 (2022)W. H. Richardson, Journal of Optics Society of America 62, 55 (1972)L. B. Lucy, The Astronomical Journal 79, 745 (1974)

The 4th Korea-China joint workshop | 10th July 2025

Richardson-Lucy algorithm

Construct Transfer matrix

- N(X) = Original image
- n(Y) = Measured image
- P(Y|X) =Blurring probability
- $n(Y) = \int dX P(Y|X) N(X)$
- P. Danielewicz, Phys. Rev. C 105 034608 (2022)
 W. H. Richardson, Journal of Optics Society of America 62, 55 (1972)
 L. B. Lucy, The Astronomical Journal 79, 745 (1974)

Richardson-Lucy algorithm

L. B. Lucy, The Astronomical Journal 79, 745 (1974)

Richardson-Lucy algorithm

$$N^{(r)}(X) = \text{Restored image at } r\text{th iteration}$$
$$N^{(2)}(X) = N^{(1)}(X) \int dY \frac{n(Y)}{n^{(1)}(Y)} P(Y|X)$$

L. B. Lucy, The Astronomical Journal 79, 745 (1974)

Richardson-Lucy algorithm

$$N^{(r)}(X) = \text{Restored image at } r$$
th iteration
 $N^{(r+1)}(X) = N^{(r)}(X) \int dY \frac{n(Y)}{n^{(r)}(Y)} P(Y|X)$

P. Danielewicz, Phys. Rev. C 105 034608 (2022)
W. H. Richardson, Journal of Optics Society of America 62, 55 (1972)
L. B. Lucy, The Astronomical Journal 79, 745 (1974)

Richardson-Lucy algorithm

$$N^{(r)}(X) = \text{Restored image at } r$$
th iteration
 $N^{(r+1)}(X) = N^{(r)}(X) \int dY \frac{n(Y)}{n^{(r)}(Y)} P(Y|X)$

P. Danielewicz, Phys. Rev. C 105 034608 (2022)
W. H. Richardson, Journal of Optics Society of America 62, 55 (1972)
L. B. Lucy, The Astronomical Journal 79, 745 (1974)

Triple differential yield

- Triple differential yield can be written as functions of momentum, rapidity, and angle relative to reaction plane.
- Reaction plane consists of impact parameter axis (x) and beam axis (z) in heavy-ion collision.
 - p^x: Momentum parallel to plane
 - p^y: Momentum perpendicular to plane

e.g.) Collective flow can be extracted by triple differential yield.

Reaction plane dispersion

Reaction plane angle blurring in methodology

- Reaction plane (RP) angle can be determined by Q vector from emitted charged particles in heavy-ion collision.
 - Flow model
 - 100 % efficiency assumption
- Reaction plane angle has been "blurred" in determination from Q vector method.
- Ψ_{RP}^{real} = Real RP angle from simulation
- Ψ_{RP}^{esti} = Estimated RP angle from Q

SPiRIT

SAMURAI Pion-Reconstruction and Ion-Tracker

- SPiRIT 2016 experiment @ RIKEN
 - Equation of state
 - TPC (Time Projection Chamber)
 - Placed in SAMURAI magnet (0.5 T)
 - 1344 x 864 mm² of pad plane area
 - ¹³²Sn + ¹²⁴Sn @ 270 MeV/u
 - ¹⁰⁸Sn + ¹¹²Sn @ 270 MeV/u
- Stronger blurring problem due to anisotropy in azimuthal angle will be solved via deblurring process.

P. Danielewicz, Phys. Lett. B (1985)

Reaction plane dispersion

Reaction plane distortion in SPiRIT

- Reaction plane (RP) angle can be determined by Q vector from emitted charged particles in heavy-ion collision.
 - Considered only forward particle
 - SPiRIT efficiency filtered in flow model
- Due to the detector inefficiency, reaction plane angle distribution has been distorted.
- Ψ_{RP}^{real} = Real RP angle from simulation
- Ψ_{RP}^{esti} = Estimated RP angle from Q

P. Danielewicz, Phys. Lett. B (1985)

$w_i \overrightarrow{p_{Ti}}$ **Reaction plane dispersion** $\Psi_{RP} = \operatorname{atan}(\frac{Q_y}{Q_x})$ $W_i = \begin{cases} +1 & (y_0 > 0.1) \\ 0 & (elsewhere) \end{cases}$ Reaction plane distortion in SPiRIT Simulation (100 % ε) $\Psi^{\text{esti}}_{\text{RP}}$ $\Psi^{\text{esti}}_{\text{RP}}$ 0 $^{-1}$ -2 -3-2 -1 0 2 -2 0 2 1 3 -3 -1 3 $\Psi_{\mathsf{RP}}^{\mathsf{real}}$ $\Psi_{\mathsf{RP}}^{\mathsf{real}}$

The 4th Korea-China joint workshop | 10th July 2025

Triple differential yield

Deblurring of flow model + SPiRIT efficiency filter

.5 0

0.4E

0.3

0.2

0.1[

0⊨

-0.1E

-0.2

-0.3E

-0.4

-0.5[⊏]⊥ -0.5

p^x/A (GeV/c)

2 У₀

Triple differential yield

Deblurring of experimental data

- Clear triple differential yield
 - In-plane momentum vs
 normalized rapidity
- Lower intensity in blurred image due to detection inefficiency

Flow parameter

Particle= Proton Particle= Alpha 0.3 5 0.15 Š flow corr flow corr 0.25 flow meas flow meas 0. 0.2 flow rest flow rest 0.15 0.05 0.1 0.05 С -0.05-0.05-0.1 -0.1 -0.15 -0.2^L –0.15¹ -0.50.5 -0.5 0.5 0 0 $y_{0} = y_{lab}^{NN} - 1$ $y_{0} = y_{lab}^{NN} - 1$

Deblurring of experimental data

- Corrected: Conventional analysis result
- Measured: No corrections (From Q)
- Restored: Deblurring result

$$\frac{d^3N}{p_T dp_T dy d\phi} \propto (1 + 2v_1 \cos\phi + 2v_2 \cos 2\phi + ...)$$

- Deblurring, the process to remove blurring effect by camera (or detector), has been applied to make clear image of triple differential yield in heavy-ion collision.
- Triple differential yield from SPiRIT data due to the methodology and detection inefficiency has been restored.
- Restored triple differential yield shows nearly consistent results of v1 and stronger v2 flow parameters.

Acknowledgement

FRIB

Pawel Danielewicz

Professor of Physics Theoretical Nuclear Physics Joined the laboratory in 1988

Richardson-Lucy algorithm

- Acting blurring to the original image causes measured image.
 - $n(Y) = \int dX P(Y|X) N(X)$
- Yielding from Bayesian consideration, Richardson-Lucy handles deconvolution iteratively.

N(X) = Original image (distribution) n(Y) = Measured image (distribution) P(Y|X) = Blurring probability Q(X|Y) = Complementary probability to P(Y|X)

 $n(Y) = \int dX P(Y|X) N(X)$

$$Q(X|Y) n(Y) dY dX = P(Y|X) N(X) dX dY$$

$$Q(X|Y) = \frac{P(Y|X)N(X)}{\int dX' P(Y|X') N(X')}$$

Rough assumption $n = \varepsilon N$ $N = n/\varepsilon$ ε = efficiency

$$N(X) = \frac{\int dY \ Q(X|Y) \ n(Y)}{\int dY \ P(Y|X)}$$

$$Q^{(r)}(X|Y) = \frac{P(Y|X)N^{(r)}(X)}{\int dX' P(Y|X') N^{(r)}(X')}$$
$$N^{(r+1)}(X) = \frac{\int dY \ Q^{(r)}(X|Y) \ n(Y)}{\int dY \ P(Y|X)}$$

P. Danielewicz, Phys. Rev. C 105 034608 (2022)
W. H. Richardson, Journal of Optics Society of America 62, 55 (1972)
L. B. Lucy, The Astronomical Journal 79, 745 (1974)

¹³²Sn + ¹²⁴Sn @ 270 MeV/u

SPiRIT experimental data

- Phase space distribution of SPiRIT experimental data.
 - Transverse momentum
 - Rapidity
- Impact parameter (0.03 < b₀ < 0.2)</p>
 - $b_0 = b/b_{max}$
 - mid-central collision
- Backward rapidity cut in analysis
 - y₀ < -0.3 (for 3He)
 - y₀ < -0.5 (for others)

Deblurring of flow model + SPiRIT efficiency filter

0.6

0.4

0.2

0

flow real flow meas

flow rest

5

Flow parameter from the deblurring of experimental data

 108 Sn + 112 Sn @ 270 AMeV (0.03 < b₀ < 0.2)

Flow parameter from the deblurring of experimental data

 132 Sn + 124 Sn @ 270 AMeV (0.03 < b₀ < 0.2)

Flow parameter of conventional method

Nehlurring of evnerimental data

Dehlurring of experimental data

