Korea-China joint workshop for rare isotope physics

2025年7月6日至10日 Benisiam Hall, Benikea Hotel, Jeju island Asia/Seoul时区

Nuclear cluster and hypernucleus production in intermediate-energy heavy-ion collisions Zhao-Qing Feng (冯兆庆) School of Physics and Optoelectronics, South China University of **Technology, Guangzhou** *Email: fengzhq@scut.edu.cn 1 - Andrewski

年南北ノ大学

Outline

Cluster, hyperon and hypercluster production via heavy-ion

collision for investigating neutron-star matter properties

- LQMD transport model
- Hyperon-nucleon interaction in dense nuclear matter via HICs
- Fragmentation reaction and hyperfragment production in HICs
- Summary and perspective

⁵⁶Fe 800 MeV/nucleon on ²⁰⁸Pb

Slide from Jian-Cheng Yang (杨建成研究员, HIAF总工程师), 2023全国核反应会议邀请报告

强流重离子加速器-HIAF

口 科学目标

集成离子超导直线加速器和环 形同步加速器最先进的技术,建造 一台束流指标先进、多学科用途的 重离子科学综合研究装置—"强流 重离子加速器研究装置" (HIAF), 为核物理和核天体物理基础研究、 原子物理、重离子束应用研究提供 国际领先水平的实验平台。基于 HIAF, 打造在国际上有重大影响的 重离子科学研究中心

总体方案:强流超导直线、快循环同步环、 多实验终端结合

Korea-China cooperation for rare isotope physics

2. Cluster production in heavy-ion collisions Experiments: SSC and CSR(HIRFL), INDRA (GANIL), CHIMERA

(LNS), NSCL (MSU), FOPI and HADES (GSI) ...

ELSEVIER

Available online at www.sciencedirect.com

Nuclear Physics A 848 (2010) 366-427

www.elsevier.com/locate/nuclphysa

Systematics of central heavy ion collisions in the 1A GeV regime

Cluster production measurement at FOPI

Μ	lultiplicities and	charg	ge balance for A	u + Au at E	E/A = 0.15 GeV	and b_0	< 0.15.	
Z = 1 59.9 ± 3.0		p d t	24.1 ± 1.2 20.4 ± 1.4 15.1 ± 1.5	Z = 2	25.0 ± 1.8	³ He ⁴ He	$8.4 \pm 0.9 \\ 16.6 \pm 1.7$	
	L B N	i	5.0 ± 0.5 1.44 ± 0.15 0.50 ± 0.05	Be C O	$\begin{array}{c} 1.69 \pm 0.17 \\ 0.90 \pm 0.09 \\ 0.26 \pm 0.03 \end{array}$			

	Multiplicities an	d char	ge balance for N	Ii + Ni at E	/A = 0.25 GeV	and b_0	< 0.15.
Z = 1	34.9 ± 1.8	p d t	19.2 ± 1.0 10.5 ± 0.8 5.1 ± 0.5	Z = 2	9.0 ± 0.7	³ He ⁴ He	$ \begin{array}{r} 3.24 \pm 0.33 \\ 5.79 \pm 0.58 \end{array} $
]	Li B	0.91 ± 0.09 0.10 ± 0.01	Be	0.26 ± 0.03		

2025/7/11

Cluster production measurement

by INDRA-FAZIA at INFN-LNS

Featured in Physics

PHYSICAL REVIEW C 107, 044614 (2023)

Examination of cluster production in excited light systems at Fermi energies from new experimental data and comparison with transport model calculations

3. Strange particle production in HICs

The ratio of K^-/K^+ in HICs of ¹²C + ¹²C (¹⁹⁷Au+ ¹⁹⁷Au) at 1.8A GeV and proton beams at 2.5 GeV (Z. Q. Feng et al., Phys. Rev. C 90, 064604 (2014))

Kaon and hyperon production in HICs (yields, invariant energy spectra, collective flows)

ZQF, Phys. Rev. C 82 (2010) 057901; Phys. Rev. C 87 (2013) 064605; Ding-Chang Zhang et al., Chin. Phys. Lett. 38 (2021) 092501

¹⁹⁷Au+¹⁹⁷Au@1.5AGeV

9

- **5. Hypernuclear production in HICs**
- Neutron-rich/proton-rich HN nuclei and (1)spectroscopies
- Multistrangeness HN (S=-2) ^{人人}X种_三X (2)
- Interaction potentials of NA, N \equiv NNA, (3)

Yield (dN/dy) for 10⁶ events

10⁴

03

10

10

10⁻²

10⁻³

10-4

10⁻⁵

1⊫

3-Dimensional Nuclear Chart

M. Kaneta and Tohoku University

H. Tamura, Prog. Theor. Exp. Phys. (2012) 02B012

Hyperons in neutron stars (NS)

S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012)

W. Z. Jiang, R. Y. Yang, and D. R. Zhang, Phys. Rev. C 87, 064314 (2013)

Diego Lonardoni, Alessandro Lovato, Stefano Gandolfi, and Francesco Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

Korea-China joint workshop for rare isotope physics

II. LQMD transport model

Lanzhou quantum molecular dynamics transport model (LQMD) Heavy-ion collisions (5 MeV – 5 GeV/nucleon) and hadron induced reaction (p, \bar{p} , π , K, e, etc)

- **LQMD transport model** (Skyrme interaction, Walecka model with σ , ω , ρ , δ)
- Neutron star equation of state via HICs (nuclear symmetry energy at sub- and supra- saturation densities in HICs, isospin splitting of nucleon effective mass from HICs, particle production, 2-body and 3-body potential, multi-body correlation)
- In-medium effects of hadrons (optical potentials, energy conservation and in-medium effects, i.e., Δ(1232), N*(1440), N*(1535)), hyperons (Λ,Σ,Ξ) and mesons (π,Κ,η,ρ,ω,φ...))
- **Kinetic production of (hyper)clusters and nuclear fragmentation reactions** (production cross section, phase-space distribution, collective flows, cluster transportation, Mott effect, e.g., deuteron, triton, ³He, α, $_{\Lambda(\Sigma)}X$, $_{\Lambda\Lambda}X$, $_{\Xi}X$, $_{\overline{\Lambda}}X$)
- **Nuclear collisions of light systems** (e.g., d+α, ⁹Be+D₂O, d+⁷Li etc, antisymmetrization with Volkov 2-body force)
- > Spallation reactions induced by p, d, t, α , \overline{p} , \overline{d} etc (cascade multi-step collision for thick targets)

1. Lanzhou quantum molecular dynamics transport model (LQMD-

Skyrme)

$$H_B = \sum_{i} \sqrt{\mathbf{p}_i^2 + \mathbf{m}_i^2} + U_{\text{int}} + U_{\text{mom}}$$

 $U_{loc} = \int V_{loc}(\rho(\mathbf{r})) d\mathbf{r}$

PHYSICAL REVIEW C 84, 024610 (2011)

Momentum dependence of the symmetry potential and its influence on nuclear reactions

Zhao-Qing Feng* Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China (Received 11 July 2011; published 19 August 2011)

$$V_{loc}(\rho) = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{1+\gamma} \frac{\rho^{1+\gamma}}{\rho_0^{\gamma}} + E_{sym}^{loc}(\rho)\rho\delta^2 + \frac{g_{sur}}{2\rho_0} (\nabla\rho)^2 + \frac{g_{sur}^{lso}}{2\rho_0} \left[\nabla(\rho_n - \rho_p)\right]^2,$$

Phys. Rev. C 84, 024610 (2011); 85, 014604 (2012)

$$U_{mom} = \frac{1}{2\rho_0} \sum_{i,j,j\neq i} \sum_{\tau,\tau'} C_{\tau,\tau'} \delta_{\tau,\tau_i} \delta_{\tau',\tau_j} \int \int \int d\mathbf{p} \, d\mathbf{p}' \, d\mathbf{r} \, f_i(\mathbf{r},\mathbf{p},t) \\ \times \left[\ln(\epsilon(\mathbf{p}-\mathbf{p}')^2+1) \right]^2 f_j(\mathbf{r},\mathbf{p}',t).$$

$$E_{sym}(\rho) = \frac{1}{3} \frac{\hbar^2}{2m} \left(\frac{3}{2}\pi^2 \rho\right)^{2/3} + E_{sym}^{loc}(\rho) + E_{sym}^{mom}(\rho).$$

 $E_{sym}^{loc}(\rho) = \frac{1}{2} C_{sym} (\rho / \rho_0)^{\gamma_s}$

2025/7/11

 $E_{sym}^{loc}(\rho) = a_{sym}(\rho/\rho_0) + b_{sym}(\rho/\rho_0)^2.$

Table 1: The parameters and properties of isospin symmetric EoS used in the LQMD model at the density of 0.16 fm^{-3} .

Parameters	α (MeV)	β (MeV)	γ	C_{mom} (MeV)	$\epsilon \; (c^2/MeV^2)$	m_∞^*/m	K_{∞} (MeV)
PAR1	-215.7	142.4	1.322	1.76	5×10^{-4}	0.75	230
PAR2	-226.5	173.7	1.309	0.	0.	1.	230

2. Covariant energy-density functional (LQMD.RMF)

$$\begin{split} L &= \bar{\psi} [i\gamma_{\mu}\partial^{\mu} - (M_N - g_{\sigma}\varphi - g_{\delta}\vec{\tau}\cdot\vec{\delta}) - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\vec{\tau}\cdot\vec{b}^{\mu}]\psi \\ &+ \frac{1}{2}(\partial_{\mu}\varphi\partial^{\mu}\varphi - m_{\sigma}^2\varphi^2) - U(\varphi) + \frac{1}{2}(\partial_{\mu}\vec{\delta}\partial^{\mu}\vec{\delta} - m_{\sigma}^2\vec{\delta}^2) \\ &+ \frac{1}{2}m_{\omega}^2\omega_{\mu}\omega^{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m_{\rho}^2\vec{b}_{\mu}\vec{b}^{\mu} - \frac{1}{4}\vec{G}_{\mu\nu}\vec{G}^{\mu\nu} \end{split}$$

Energy density functional

$$\varepsilon = \sum_{i=n,p} 2 \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M_i^{*2}} + \frac{1}{2}m_\sigma^2 \varphi^2 + U(\varphi) + \frac{1}{2}m_\omega^2 \omega_0^2 + \frac{1}{2}m_\rho^2 b_0^2 + \frac{1}{2}m_\delta^2 \delta_3^2$$

Temporal evolution in phase space

$$\begin{split} \dot{\mathbf{x}} &= \frac{\mathbf{P}_{\mathbf{i}}^{*}}{p_{0}^{*}} + \sum_{i \neq j}^{N} \{ \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} u_{i,\mu} B_{i} B_{j} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{i}^{*\mu} u_{j,\mu} B_{i} B_{j} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{g_{v}^{2}}{2m_{v}^{2}} z_{j}^{*\mu} \rho_{ji} B_{i} B_{j} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} \\ &+ z_{j}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{\rho_{ij}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial u_{i,\mu}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{u_{i,\mu}}{1 - p_{T,ij}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ij}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{i,\mu} \rho_{ij} \frac{\partial [1 / (1 - p_{T,ij}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &+ z_{i}^{*\mu} \frac{B_{i} B_{j} \bar{g}_{v}^{2}}{2m_{v}^{2}} [\frac{u_{j,\mu}}{1 - p_{T,ji}^{2} / \Lambda_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + u_{j,\mu} \rho_{ji} \frac{\partial [1 / (1 - p_{T,ji}^{2} / \Lambda_{v}^{2})]}{\partial \mathbf{p}_{\mathbf{i}}}] \\ &- \frac{m_{j}^{*}}{p_{j}^{*0}} \frac{\partial S_{j}}{\partial \mathbf{p}_{\mathbf{j}}} / \overline{m_{i}^{*0}} \frac{\partial S_{i}}{\partial \mathbf{p}_{\mathbf{i}}} \}, \\ \text{Korea-China joint workshop for rare isotope physics} \text{for rare isotope physics} \frac{D_{ij}}{D_{i}} + \frac{D_{ij}}{2m_{v}^{2}} \frac{\partial \rho_{ji}}{\partial \mathbf{p}_{\mathbf{i}}} + \frac{D_{ij}}{2m_{v}^{2}} \frac{\partial S_{j}}{\partial \mathbf{p}_{\mathbf{i}}} \}, \end{aligned}$$

Si-Na Wei, Zhao-Qing Feng, Nuclear Science and Techniques 35, 15 (2024) arXiv:2302.09984

$$F_{\mu\nu} = \partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu},$$

$$G_{\mu\nu} = \partial_{\mu}\vec{b}_{\nu} - \partial_{\nu}\vec{b}_{\mu},$$

$$U(\varphi) = \frac{g_2}{3}\varphi^3 + \frac{g_3}{4}\varphi^4$$

TABLE I: Parameter sets for RMF. The saturation density ρ_0 is set to be 0.16 fm^{-3} . The binding energy of saturation density is $E/A - M_N = -16$ MeV. The isoscalar-vector ω and isovector-vector ρ masses are fixed to their physical values, $m_{\omega} = 783$ MeV and $m_{\rho} = 763$ MeV. The remaining meson mass m_{σ} is set to be 550 MeV.

model	g_{σ}	g_{ω}	$g_2 (fm^{-1})$	g_3	$g_{ ho}$	g_{δ}	K (MeV)	$E_{sym}(\rho_0)$ (MeV)	$L \ (\rho_0) (MeV)$
set1	8.145	7.570	31.820	28.100	4.049	-	230	31.6	85.3
set2	8.145	7.570	31.820	28.100	8.673	5.347	230	31.6	109.3
set3	8.145	7.570	31.820	28.100	11.768	7.752	230	31.6	145.0

Symmetry

$$E_{sym} = \frac{1}{6} \frac{k_F^2}{E_F^*} + \frac{1}{2} \left[f_\rho - f_\delta \left(\frac{M^*}{E_F^*} \right) \right] \rho$$

energy

$$f_{
ho,\delta} = g_{
ho,\delta}/m_{
ho,\delta}$$

3. Particle production π and resonances (Δ (1232), N*(1440), N*(1535), ...) production:

 $NN \leftrightarrow N\Delta, \quad NN \leftrightarrow NN^*, \quad NN \leftrightarrow \Delta\Delta, \quad \Delta \leftrightarrow N\pi,$ $N^* \leftrightarrow N\pi$, $NN \leftrightarrow NN\pi(s-state)$, $N^*(1535) \leftrightarrow N\eta$

Collisions between resonances, $NN^* \leftrightarrow N\Delta$, $NN^* \leftrightarrow NN^*$

Strangeness channels:

$$\begin{array}{l} BB \rightarrow BYK, BB \rightarrow BBK\overline{K}, B\pi(\eta) \rightarrow YK, YK \rightarrow B\pi, \\ B\pi \rightarrow NK\overline{K}, Y\pi \rightarrow B\overline{K}, \quad B\overline{K} \rightarrow Y\pi, \quad YN \rightarrow \overline{K}NN, \\ BB \rightarrow B\Xi KK, \overline{K}B \leftrightarrow K\Xi, YY \leftrightarrow N\Xi, \overline{K}Y \leftrightarrow \pi\Xi. \end{array}$$

Reaction channels with antiproton:

$$\overline{p}N \to \overline{N}N, \ \overline{N}N \to \overline{N}N, \ \overline{N}N \to \overline{B}B, \ \overline{N}N \to \overline{Y}Y$$

$$\overline{N}N \rightarrow \text{annihilation}(\pi, \eta, \rho, \omega, K, \overline{K}, K^*, \overline{K}^*, \phi)$$

Statistical model with SU(3) symmetry for annihilation (E.S. Golubeva et al., Nucl. Phys. A 537, 393 (1992))

The **PYTHIA** and **FRITIOF** code are used for baryon(meson)-baryon and antibaryon-baryon collisions at high invariant energies

III. Hyperon-nucleon interaction in dense nuclear matter via HICs

$$H_{Y} = \sum_{i=1}^{N_{Y}} V_{i}^{Coul} + V_{opt}^{Y}(\boldsymbol{p}_{i}, \rho_{i}) + \sqrt{\boldsymbol{p}_{i}^{2} + m_{Y}^{2}}$$

$$V_{opt}^{Y}(\boldsymbol{p}_{i}, \boldsymbol{\rho}_{i}) = \omega_{Y}(\boldsymbol{p}_{i}, \boldsymbol{\rho}_{i}) - \sqrt{\boldsymbol{p}_{i}^{2} + m_{Y}^{2}}$$

$$\omega_Y(\boldsymbol{p}_i, \rho_i) = \sqrt{(m_Y + \Sigma_S^Y)^2 + \mathbf{p}_i^2} + \Sigma_V^Y,$$

Phenomenological potential by fitting the results of chiral effective field theory

$$V_{opt}^{\Lambda}(\boldsymbol{p}_i, \rho_i) = V_a(\rho_i/\rho_0) + V_b(\rho_i/\rho_0)^2 + C_{mom}(\rho_i/\rho_0)\ln(\epsilon \boldsymbol{p}_i^2 + 1)$$

$$V_{opt}^{\Sigma}(\boldsymbol{p}_i, \rho_i) = V_0(\rho_i/\rho_0)^{\gamma_s} + V_1(\rho_n - \rho_p)t_{\Sigma}\rho_i^{\gamma_s} + C_{mom}(\rho_i/\rho_0)\ln(\epsilon \boldsymbol{p}_i^2 + 1).$$

Contents lists available at ScienceDirect Physics Letters B journal homepage: www.elsevier.com/locate/physletb

Phys. Lett. B 851 (2024) 138580

Letter

Extracting the hyperon-nucleon interaction via collective flows in heavy-ion collisions

Zhao-Qing Feng ^D

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

2025/7/11

Korea-China joint workshop for rare isotope physics

Hyperon-nucleon interaction in dense matter I:

Extracting the hyperon-nucleon interaction via collective flows in heavy-ion collisions

Phys. Lett. B 851 (2024) 138580

Hyperon-nucleon interaction in dense matter I: The general flavor SU(3) symmetry for hyperon-nucleon potential

$$\mathcal{L}_{int} = \sum_{B} \bar{\psi}_{B} [g_{B\sigma}\sigma - \gamma_{\mu}(g_{B\omega}\omega^{\mu} + g_{B\phi}\phi^{\mu} + g_{B\rho}\vec{\tau}\cdot\vec{b}^{\mu})]$$

$$\begin{aligned} |\psi_B - \frac{1}{3}g_2\sigma^3 - \frac{1}{4}g_3\sigma^4, \\ \frac{g_{\Lambda\omega}}{g_{N\omega}} &= \frac{g_{\Sigma\omega}}{g_{N\omega}} = \frac{\sqrt{2}}{\sqrt{2} + \sqrt{3}z}, \\ \frac{g_{\Lambda\phi}}{g_{N\omega}} &= \frac{g_{\Sigma\phi}}{g_{N\omega}} = \frac{-1}{\sqrt{2} + \sqrt{3}z}, \\ \frac{g_{\Xi\omega}}{g_{N\omega}} &= \frac{\sqrt{2} - \sqrt{3}z}{\sqrt{2} + \sqrt{3}z}, \\ g_{\Xi\phi} &= \frac{1 + \sqrt{6}z} \end{aligned}$$

 $\sqrt{2} + \sqrt{3}z$

 $\sqrt{6}z - 1$

1

ELSEVIER

Letter

Correlation of the hyperon potential stiffness with hyperon constituents in neutron stars and heavy-ion collisions

Phys. Lett. B 853 (2024) 138658

Si-Na Wei^{a, (0)}, Zhao-Qing Feng^{b, (0)},*, Wei-Zhou Jiang^c

LQMD.RMF

20

Check for updates

^a School of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, China ^b School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

School of Physics, Southeast University, Nanjing 211189, China

Phys. Lett. B 853 (2024) 138658

2025/7/11

 $g_{N\omega}$

 $g_N\phi$

 $g_{N\omega}$

Correlation of the hyperon potential stiffness with hyperon constituents in neutron stars and heavy-ion collisions

Si-Na Wei, ZQF, Wei-Zhou Jiang, PLB 853 (2024) 138658

High-density symmetry energy from hyperon production in heavy-ion collisions, Physics Letters B 846 (2023) 138180

22

Korea-China joint workshop for rare isotope physics

IV. Fragmentation reaction and hyperfragment production in HICs

 $p+\Lambda+n+N \leftrightarrow_{\Lambda}{}^{3}H+N', \quad p+\Lambda+n+n+N \leftrightarrow_{\Lambda}{}^{4}H+N', \quad p+\Lambda+\Lambda+N \leftrightarrow_{\Lambda}{}^{3}H+N', \quad p+n+\Lambda+\Lambda+N$

 $n+n+\Lambda+N\leftrightarrow_{\Lambda}^{3}n+N', n+n+\Lambda+\Lambda+N\leftrightarrow_{\Lambda\Lambda}^{4}n+N'$

以及π介子催化引起的反应道:

 $\pi + N_1 + N_2 \leftrightarrow \pi + \text{deuteron}, \pi + N_1 + N_2 + N \leftrightarrow \text{deuteron} + N', \pi + N_1 + N_2 + N_3 \leftrightarrow \pi + \text{triton}$ (helium-3), $\pi + N_1 + N_2 + N_3 + N \rightarrow \pi + \text{triton}$ (helium-3)+N', $\pi + p + n + \Lambda \leftrightarrow \pi + \Lambda^3 H$, $\pi + p + n + n$ $+\Lambda \leftrightarrow \pi + \Lambda^4 H, \pi + p + p + n + \Lambda \leftrightarrow \pi + \Lambda^4 He$

. . .

 $\frac{\left|\left[\partial e(k)/\partial k\right]_{k=\tilde{p}_{\rm rel}}\right|}{\left|\left[\partial H\left(p_f\right)/\partial p_f\right]_{p_f=p_{\rm rel}}}\left|\frac{p_{\rm rel}^2}{\tilde{p}_{\rm rel}^2}\left[\frac{d\sigma_{\rm NN}}{d\Omega}\right]\right|$

 $\frac{d\sigma}{d\Omega} = P(C_1 + C_2 \to C_3 + C_4) \times$

 $\frac{v_{\widetilde{p}_{\mathrm{rel}}}}{v}$

h

α

0.9

1.0

0.8

Schematic picture of nuclear cluster and hypercluster in HICs

Kinetic approach for cluster production (LQMD.cluster)

¹⁹⁷Au+¹⁹⁷Au@50~250A MeV

b_<0.15

14

α

129Xe+118Sn @

600

40

50

50*A* MeV

Novel approach to light-cluster production in heavy-ion collisions

Hui-Gan Cheng and Zhao-Qing Feng School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China (Received 8 November 2023; accepted 25 January 2024; published 15 February 2024)

 $H = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m} + \frac{\alpha}{2} \sum_{i,j} \frac{\rho_{ij}}{\rho_{0}} + \frac{\beta}{1+\gamma} \sum_{i} \left(\sum_{j,j\neq i} \frac{\rho_{ij}}{\rho_{0}} \right)^{T}$ $+\frac{C_{sym}}{2}\sum_{\substack{i,j\\i\neq i}}t_{z_i}t_{z_j}\frac{\rho_{ij}}{\rho_0}+\frac{g_{sur}}{2}\sum_{\substack{i,j\\i\neq i}}'\left[\frac{3}{2L}-\left(\frac{\mathbf{r}_i-\mathbf{r}_j}{2L}\right)^2\right]\frac{\rho_{ij}}{\rho_0}$ + $\sum_{\text{z.p.}}^{N_C} E_{\text{z.p.}}^i$ + $\sum_{\text{vcorr}}^{N_d} V_{\text{corr}} e^{-r_i^2/4L}$

3(

≥^{° 20} r

<^{∼20}۲

ຶ[≞] 20 ຂຶ້₁₀

Hypernuclide production via HICs (Wigner density

2.9.9 Phys. Rev. C 102, 044604 (2020) Data: C. Rappold et al., (HypHI collaboration) Phys. Lett. B 747, 129 (2015)

10²

Korea-China joint workshop for rare isotope physics

124Sn+124Sn@2A

10

(a)

- Beryllium

Carbon

Beryllium (Λ)
 Carbon (Λ)

GeV

(b)

Multi-strangeness hypernuclide production

H.G. Cheng, Z. Q. Feng, Phys. Lett. B 824 (2022) 136849

TABLE I. Comparison between cross sections of double lamda hypernuclei calculated with $r_0 = 3.5$ fm for Λ in ¹⁹⁷Au + ¹⁹⁷Au and ⁴⁰Ca + ⁴⁰Ca collisions at 3A GeV

Hypernuclei	Cross sections (mb)					
	$^{197}Au + ^{197}Au$	$^{40}Ca + ^{40}Ca$				
$^{4}_{\Lambda\Lambda}\mathrm{H}$	$2.6 imes10^{-2}$	$1.0 imes10^{-4}$				
$^{4}_{\Lambda\Lambda}$ He	$1.0 imes10^{-2}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}H$	$5.9 imes10^{-3}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}$ He	$5.1 imes 10^{-3}$	$\sim 10^{-5}$				
$^{5}_{\Lambda\Lambda}$ Li	$1.4 imes 10^{-3}$	$\sim 10^{-6}$				
$^{6}_{\Lambda\Lambda}$ He	$2.2 imes 10^{-3}$	$\sim 10^{-6}$				
$^{7}_{\Lambda\Lambda}$ He	$6.8 imes10^{-4}$	$\lesssim 10^{-6}$				
for rare isotone physics		7.1				

Korea-China joint workshop for rare isotope physics

- The high-density symmetry probes single and double ratios of Σ^{-}/Σ^{+} (double ratio) via the isotopic reactions ¹¹²Sn+¹¹²Sn and ¹²⁴Sn+¹²⁴Sn, in particular above 0.4 GeV.
- Hyperon production in heavy-ion collisions at HIAF energies provides a successful way for investigating the hyperon-nucleon potential in **dense nuclear matter**, e.g., $\Lambda NN, \Sigma NN, \Xi NN$ etc, might be constrained via heavy-ion collisions at HIAF.
- Kinetic approach is implemented in the LQMD transport model for the nuclear cluster production in Fermi energy heavy-ion collisions, hypercluster in the near future, in which the binding energy, multinucleon (cluster) collisions, Pauli principle, Mott effect etc are taken into account.

Thanks for your attention !