Charge-exchange reaction and neutrino physics

Bingshui Gao Institute of Modern Physics, Chinese Academy of Sciences

Korea-China joint workshop for rare isotope physics Jul 6 – 10, 2025, Jeju island, Korea

CONTENTS

Introduction to charge-exchange reactions
Neutrino detectors
Double beta decay
Summary

(Hadronic) Charge-exchange reaction

$$\frac{d\sigma}{d\Omega}(q \to 0) = C \cdot \langle f | \hat{\sigma}\hat{\tau} | i \rangle^2 = C \cdot B(\text{GT})$$

(Hadronic) Charge-exchange reaction

Both charge-exchange reaction and beta-decay measurements provide information of B(GT), but charge-exchange reaction is not limited by the Q-value window.

$$\frac{d\sigma}{d\Omega}(q \to 0) = C \cdot \langle f \left| \hat{\sigma} \hat{\tau} \right| i \rangle^2 = C \cdot B(\text{GT})$$

$$\sigma(E_{\nu_e}) = \frac{G_F^2 \cos^2 \theta_c}{\pi} k_e E_e F(Z+1, E_e) \times [B(F) + (g_A^{\text{eff}})^2 B(GT)]|,$$

GALLEX、SAGE etc. use ⁷¹Ga as the detector medium, accurate cross sections are important!

Gallium anomaly: measured counts lower than expected by ~20% when using ⁵¹Cr or ³⁷Ar sources. Uncertain nuclear inputs or new physics ?

 ν_{e}

0 keV

 71 Ga

neutrino sources

The ⁷¹Ga(³He,t)⁷¹Ge charge-exchange experiment:

Frekers et al., PLB 706, 134 (2011)

New life-time measurements of ⁷¹Ge (literature value $T_{1/2} = 11.43 \pm 0.03$ days):

 $T_{1/2} = 11.46 \pm 0.04$ days

Collar and Yoon, PRC 108, L021602 (2023)

 $T_{1/2} = 11.468 \pm 0.008$ days

Norman *et al.*, PRC 109, 055501 (2024)

 $T_{1/2} = 11.477 \pm 0.004$ days

Cai et al., to be submitted

(b)

10⁵

 10^{4}

Branching ratios of the ⁵¹Cr decay (v_e source):

 $2\nu\beta\beta$ have been observed and T_{1/2} obtained for ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U, ⁷⁸Kr, ¹²⁴Xe and ¹³⁰Ba have been obtained.

- absolute neutrino mass scale
- Majorana particles
- matter-antimatter asymmetry of the Universe
- New physics...

¹³⁶Xe ββ decay: EXO-200, nEXO, KamLAND-Zen, NEXT PandaX-III etc.

$$\Gamma_{\beta^{-}\beta^{-}}^{2\nu} = G^{2\nu}(Q,Z)g_{A}^{4} \left| M_{\rm DGT}^{(2\nu)} \right|^{2}$$

Why is the ¹³⁶Xe $M_{DGT}^{2\nu}$ so small ? 0.0181(6) for ¹³⁶Xe vs. 0.03~0.32 for others The two-leg structure of $M_{DGT}^{2\nu}$:

One leg is known for ¹³⁶Xe

Puppe et al., PRC 84, 051305(R) (2011)

Let's measure the other leg via ¹³⁶Ba(t,³He)¹³⁶Cs charge-exchange reaction!

- From charge-exchange reaction, B(GT) can be extracted (not limited by Q-value!)
- Useful in studying weak interactions: neutrino detectors, ββ decay, neutrino-induced nucleosynthesis, stellar beta-decay rates, isospin symmetry etc.
- \succ Coincident γ -ray measurement significantly boosts the resolution

