Silicon Detector with a Dipole Magnet

1

Effective charge state of ions in Gas in 2 - 9 MeV

<u>S.W Choi</u>, J.K Ahn Department of Physics, Korea University

COREA Experiment

$\boldsymbol{C}_{arbon} \; \boldsymbol{O}_{xygen} \; \boldsymbol{R}_{eaction} \; \boldsymbol{E}_{xperiment} \; \text{with} \; \boldsymbol{A}_{ctive} \; \text{target TPC}$

 $^{12}\mathrm{C}$ Beam ($E_k < 10 \, \mathrm{MeV}$) with $^4\mathrm{He}$ active gas target

Precise experimental determination of $^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$ cross section at low energies are necessary

Effects of Electron Screening

Understanding of effective charge is necessary to yield exact cross section

$$f(E) = \frac{\sigma_s(E)}{\sigma_B(E)} = \exp\left(\pi\eta \frac{U_e}{E}\right) \qquad \begin{aligned} E/U_e &\simeq 1000 : f_{12}\mathsf{C}_{+\alpha} = 1.007\\ E/U_e &\simeq 100 : f_{12}\mathsf{C}_{+\alpha} = 1.25 \end{aligned}$$

H.J. Assenbaum and K. Langanke Z. Phys. A - Atomic Nuclei 327, 461 468 (1987)

1.2 T Spectrometer System

Dipole magnet up to 1.2 T is prepared

For CSD measurement,
spatial and energy informations are
necessary : Silicon Detectors

Bench Test Setup

Two W1(SS) SSD detectors will be installed Thickness : Single Sided, 400 µm, 3.1mm pitch 16 strips

Chamber was also manufactured to accommodate SSSD

Stand-alone, or with 1.2 T dipole magnet

²⁴¹Am Alpha source tests and corresponding Geant4 simulations are ongoing

Average vacuum pressure : $\sim 10^{-5}$ Torr

Performance Test Result with ²⁴¹Am

Basic performance test was done for each SSSD

Energy Resolution (FWHM) : ~ 24 keV for 5.486 MeV α particle from ²⁴¹Am

Full depletion : ~ 60 V (~ 90 V from manufacturer)

²⁴¹Am Dipole Magnet Simulation

GEANT4 Simulation

0.1 atm P10 gas Focal Plane : Set to 3+ (Adjustable) Incident Ion : ¹²C⁶⁺, 6 MeV, 7 MeV, 8 MeV

Charge

6

10²

10

Future Plans

²⁴¹ Am source test	Stand alone		
	With 1.2 T spectrometer		
RI Beam test @ KIST, Seoul			

Several COREA experiments are performed/planned \Im KIST ${}^{27}\text{Al}(p,\gamma){}^{28}\text{Si}$ reaction using LaBr3 detector array ${}^{11}\text{B}(p,\gamma){}^{12}\text{C}$ reaction using SSD and LaBr3 detector array

Max. Kinetic Energy : $(1+q) \times 2 \text{ MV} / 1 \sim 2 \mu A$

Summary

A experimental setup for effective charge measurement is prepared

Vacuum chamber for operating SSSD at focal plane & electronics system

Basic performance test using ²⁴¹Am

Hardware preparation is almost finished

Geant4 Simulation study is ongoing

Effective charge model is incorporated to GEANT4 Simulation Toolkit Simulation for ¹⁶O, ¹²C under various gas system

We are planning actual beam test @ KIST

Effective charge study of ¹⁶O, ¹²C, ⁴He under 0.01 ~ 0.1 atm P1O, isobutane Several experiments concerned with COREA is planned using Silicon detector