Performance of Neutron Detector for p + ⁴⁰**Ar Reaction**

Korea University Sooho Chae

The 4th Korea-China Joint Workshop for rare isotope physics

Motivation

- Abundance of 40 K is related to the evolution of habitable environments in earth-like extra solar planets
- We will focus on the destruction of Potassium through ⁴⁰K(n,p)⁴⁰Ar Reaction
- \rightarrow We are going to measure cross-section of ⁴⁰Ar(p,n)⁴⁰K

Motivation

Expected Neutron Energy from ⁴⁰K Reaction of ⁴⁰Ar(p,n)⁴⁰K

Neutron Energy from Ground State ⁴⁰K When Proton Energy is 4 MeV (distance is 3 m) $0.977 \text{ MeV} \le E_n \le 1.18 \text{ MeV} \longrightarrow \text{tof}_{min} = 200 \text{ ns}$ 1st Excited State ⁴⁰K \rightarrow tof_{min} = 203 ns 0.949 MeV $\leq E_n \leq 1.15$ MeV 2nd Excited State ⁴⁰K 0.245 MeV $\leq E_n \leq$ 0.352 MeV \rightarrow tof_{min} = 365 ns 3rd Excited State ⁴⁰K 0.165 MeV $\leq E_n \leq$ 0.254 MeV \rightarrow tof_{min} = 413 ns

Test Bench for Cosmic Test

Scintillator Type	Dimension (mm)	Light Yield (/MeV)	PMT type
BC 408	200x100x100	7500	EMI 9954B

Time Resolution from Time-of-Flight Measurement

Time of Flight

- TDC Module resolution : 25 ps
- ToF : 18.0 ± 0.06 Ch

•
$$\sigma_{tof} = 4.1 \pm 0.05$$
 Ch
 $\rightarrow \sigma_{det} = 72 \pm 0.8$ ps

Geant4 Simulation for Detection Efficiency

- Physics Model : FTFP_BERT_HP
- Only data exceeding 133 eV were collected
- The main processes are ¹H(n, n)¹H, ¹²C(n, n)¹²C and ¹²C(n, γ)¹³C
- Monoenergetic Neutrons are used from 0.1 MeV to 5 MeV ullet

number of detected events Detection Efficiency = number of emitted events from source

Geant4 Simulation for Detection Efficiency

Detection Efficiency

Summary

- Neutron Detector has developed for measuring cross section of ⁴⁰K(n,p)⁴⁰Ar reaction
- Cosmic Test has been done for measuring time resolution
- Geant4 Simulation has been done for simulating detection efficiency

Back Up

⁴¹K

11