Korea-China joint workshop for rare isotope physics

Gating GEM HV driver and LaBr $_3$ Readout with MPPC

Korea University HAdron & Nuclear physics Lab Choi Dahyun

COREA Experiment

Physics motivation

COREA Experiment O 11 ladron & Nuclear Physics L COREA experiment detector setup aTPC SC Magnet AT-TPC C ¹²C Beam He gas detector LaBr₃ + MPPC array LaBr₃ detector array **Detector setup**

(HANUL Ball)

aTPC gating system Configuration of aTPC gating system

Gating GEM HV driver

TPC gating GEM driver

Circuit diagram / operating method

- The circuit determine the output voltage by using **two input** 1. voltage rails and the mid-point Voltage between 2 inputs.
- 2. NIM signal drives **four MOSFETs**, thereby switching the voltage through to the output.
- 3. A photocoupler disconnect the HV section (~2000 V) and the **NIM-signal section** (~ -1 V).

TPC gating GEM driver Test

Test with real Voltage

Gating driver signal

- At low voltage (- 50 V, 150 V), gating driver shows good performance.
 (opening 200 ns, closing 300 ns)
- At high voltage, voltage was applied to the driver without any issues.

Opening

Closing

After connecting gating GEM, we will check the result again

LaBr₃ Readout with MPPC

$LaBr_{3}\ detector\ with\ MPPC\ readout\ board$ $_{\rm Explain}$

-> Dynamic range should be over 10 MeV

$LaBr_{3} \ detector \ with \ MPPC \ readout \ board \ structure$

LaBr₃ detector Test About the pulse shape and dynamic range

- The signal was shaped to **150 ns** pulse width. •
- Assuming a linearity between the incident energy and the pulse height, • the circuit can cover energies up to around **31 MeV**.

Source	Pulse height	Energy
Cs-137	32 mV	0.6617 MeV
Co-60	65 mV	1.332 MeV
Saturation	1500 mV	Around 31 MeV

MPPC signal / Maximum height case

LaBr3 detector Test

with source

- Energy spectrum of LaBr3 detector with Cs-137, Co-60 and AmBe source, using self-trigger.
- LaBr₃ detector showed 5 % resolution (FWHM) with AmBe source.

- For COREA experiment, we've developed Gating GEM HV driver circuit and LaBr₃ detector readout with MPPC.
- Gating GEM HV driver showed fast switching performance with small noise.
- LaBr₃ detector readout with MPPC reached over 10 MeV dynamic range and showed good resolution.