Feasibility Study for Proton Upscattering on ¹²C using MATE-TPC at PKU Tandem

Jung Woo Lee

Tripple alpha process

- Triple-alpha process producing bound ¹²C from three alpha particle, is a crucial mechanism in Helium burning stars which goes through second 0⁺ state known as Hoyle state (7.65 MeV).
- The rate of bound ¹²C production is proportional to the radiative decay width of ¹²C* Hoyle state (HS).

12C Upscattering

- At high temperature and high-density condition, inelastic scattering of light particles to ¹²C*(HS) may enhance the rate of bound ¹²C formation.
- This process was named as particle upscattering recently.

Experimental method

- The rate of bound ¹²C production is proportional to the radiative decay width of ¹²C* Hoyle state (HS).
- At high temperature and high-density condition, inelastic scattering of light particles to ¹²C*(HS) may enhance the rate of bound ¹²C formation.
- This process was named as particle upscattering recently.

Previous Result

 Previous study for the proton upscattering on ¹²C*(HS) measured total cross section of ¹²C(p,p')¹²C*(HS) energy up to 2.3 MeV above HS threshold.

Theoretical prediction

- The Hauser-Feshbach calculation cannot reproduce the resonance peaks, however, provide $2^+ \rightarrow 0^+_2$ cross-section data which cannot be measured experimentally.
- We propose to measure total cross section of proton energy range 8 18 MeV.

Theoretical prediction

- The Hauser-Feshbach calculation cannot reproduce the resonance peaks, however, provide $2^+ \rightarrow 0_2^+$ cross-section data which cannot be measured experimentally.
- We propose to measure total cross section of proton energy range 8 18 MeV.
- Inclusion of the in-medium enhancement of the triple- α rate suppress the production of ^{92,94}Mo and ^{96,98}Ru.

Theoretical prediction and neutron case

• Recently, the neutron upscattering experiment ${}^{12}C(n,n'){}^{12}C^*(HS)$ was measured which showed big discrepancy compared to the previous Hauser-Feshbach calculation.

Main Experiment @ JAEA Tandem

- Main experiment will be performed at tandem accelerator of Japan Atomic Energy Agency (JAEA) located in Tokai-mura.
- Proton beam with energy of 8 20 MeV and intensity of 10⁷ pps will be delivered to the experiment hall.
- Active target TPC, AToM-X will be used to measure the reaction.

Main Experiment @ JAEA Tandem

AToM-X

Issues

- Visibility of proton signal
 - If proton beam is invisible.
 - > Only decay alpha track will be seen from the TPC.
 - \triangleright \quad We can use only TPC for the trigger.
 - If proton beam is visible, we need to check followings:
 - 1. Field distortion.
 - 2. Alpha tracks signal compared to proton beam pileup.
- Capability of beam intensity measurement (10⁷ pps).

• We decided to prepare for the preview experiment!

Preview Experiment @ PKU Tandem

- Tandem at Peking University, MATE-TPC from Institute of Modern Physics (IMP).
- Aim to measure proton beam intensity and monitor TPC signal.

Preview Experiment @ PKU Tandem

- Tandem at Peking University, MATE-TPC from Institute of Modern Physics (IMP).
- Aim to measure proton beam intensity and monitor TPC signal.

Preview Experiment @ PKU Tandem

A

- Proton beam
 - 9 MeV
 - 4x10⁶ pps
 - 3 BTU (3 x 8 hours)
- Detectors
 - MATE-TPC
 - Attenuator
 - Plastic scintillator
- Alpha source

Beam Position and Intensity measurement

Beam Position and Intensity measurement

Attenuation factor

- Assuming beam intensity was stable through several runs, attenuation factor is 6.2/3634 ~ 1/600.
- Scintillator can measure up to 10⁴ pps.
- Scintillator with attenuator can measure up to 6x10⁶ pps.

10⁶ pps

Only alpha source tracks are visible at this intensity

4x10⁶ pps

- Proton beam pile up is visible at this point.
- Alpha track is straight meaning that the field is secured.
- Alpha signal is comparable or bigger compared to the beam pileup signal.

What we learned from this experiment

- Tandem proton beam is very narrow so it will not disturb side region.
- \circ Proton signal is visible at the intensity of 10⁶ pps.
- The pileup proton signal was distinguishable compared to the alpha track signal.
- Field is not distorted by the pileup proton electrons.
- Lowering the GEM bias voltage might remove the beam signary
- Beam intensity up to 10⁷ pps can be measured.
- New strategy for the trigger is needed.
- Experiment will be challenging, but not impossible!

