Korea-China joint workshop for rare isotope physics

Cluster Models in the Study of Light Nuclei

Bo Zhou (周波)

Fudan University

Outline From ¹²C to condensate state $3\alpha + p$ clustering in ¹³N $\alpha + \alpha + n$ three-body reaction Summary and Prospect

July. 08, 2025

Benisiam Hall, Benikea Hotel, Jeju island

Nuclear Cluster Physics

Ikeda diagram of light nuclei

Clustering in heavy nuclei ?

https://physics.aps.org/articles/v3/8

Cluster states of ¹²C

Shape/Structure of the ¹²C

D J Marín-Lámbarri, et al., PRL 113, 012502 (2014)

Hoyle state of ¹²C

 $^{12}C(0^+_2)$

$$\Psi_{3\alpha}^{\text{THSR}} = \mathcal{A} \left\{ \exp \left[-\frac{2}{B^2} (\mathbf{X}_1^2 + \mathbf{X}_2^2 + \mathbf{X}_3^2) \right] \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \right\}$$

= $\exp \left(-\frac{6}{B^2} \mathbf{\xi}_3^2 \right) \mathcal{A} \left\{ \exp \left(-\frac{4}{3B^2} \mathbf{\xi}_1^2 - \frac{1}{B^2} \mathbf{\xi}_2^2 \right) \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \right\},$
 $\mathbf{\xi}_1 = \mathbf{X}_1 - \frac{1}{2} (\mathbf{X}_2 + \mathbf{X}_3), \qquad \mathbf{\xi}_2 = \mathbf{X}_2 - \mathbf{X}_3, \qquad \mathbf{\xi}_3 = \frac{1}{3} (\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3)$

 3α Bose-Einstein state

Nonlocalized cluster motion of 3α clusters in ^{12}C

We really obtained the single high-accuracy THSR-type wave functions for 3⁻ and 4⁻ states,

$$\propto \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{S}_1)^2}{b^2 + 2\boldsymbol{\beta}^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{S}_2)^2}{3/4 \ (b^2 + 2\boldsymbol{\beta}^2)}]\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\}$$

Size parameters β obtained by variational calculations.

Two-body overlap function (Two-body RWA)

6

 $N\alpha$ nuclei

Search for the N α condensate state

3α condensate	4α condensate	5a condensate
(Hoyle state)	(0_6^+ state)	(?)
2001 (THSR)	2008~ (OCM,THSR)	2019~

study of alpha condensate in finite nuclei

Multi- α condensation

Some candidates for α condensate were found from experiments for ¹²C and ¹⁶O.

Rev. Mod. Phys. 89, 011002 (2017).

No experimental signatures for α condensation were observed

Phys. Rev. C 100, 034320 (2019)

An experimental way of testing Bose-Einstein condensation of clusters in the atomic nucleus is reported. The enhancement of cluster emission and the multiplicity partition of possible emitted clusters could be direct signatures for the condensed states.

Alpha condensate in ¹⁶O

The decay scheme and connections

The 6α clustering structure probed by Inelastic Scattering

 6α condensed state was searched for in the highly excited region.

- 6α condensed state is expected at 5 MeV above the 6α threshold. $- E_x \sim 28.5 + 5 = 33.5$ MeV
- No significant structure suggesting the 6α condensed state.
 - Several small structures indistinguishable from the statistical fluctuation. → Need more statistics.

by measuring the 12C+12C scattering

A. Tohsaki et al./Nuclear Physics A738 (2004) 259–263

261

Table 1

The independent number of permutations for each kernel. Here, the case of the norm kernel for 24 Mg is added. The final row shows a full number of permuations without any reduction for the norm kernel.

	$^{8}\text{Be}(2\alpha)$	$^{12}C(3\alpha)$	$^{16}O(4\alpha)$	$^{20}Ne(5\alpha)$	$^{24}Mg(6\alpha)$
norm	3	9	35	185	1614
kinetic	7	34	242	2546	
two-body	9	58	669	10912	
three-body	40	366	6773	156617	
$(n!)^4$	16	1296	3.32×10^5	2.07×10^8	2.79×10^{11}

Remains challenging in theoretical calculations

PLB,848 (2024) H

KAWABATA Takahiro

Clustering structure of $3\alpha + p$ in ¹³N

Hoyle-analog state in ¹³N

arXiv:2501.18303

Hoyle-analog state in ¹³N

PHYSICAL REVIEW C 109, 054308 (2024)

Cluster structure of $3\alpha + p$ states in ¹³N

J. Bishop[®],^{1,2} G. V. Rogachev,^{1,3,4} S. Ahn,⁵ M. Barbui[®],¹ S. M. Cha,⁵ E. Harris[®],^{1,3} C. Hunt,^{1,3} C. H. Kim[®],⁶ D. Kim,⁵ S. H. Kim,⁶ E. Koshchiy[®],¹ Z. Luo,^{1,3} C. Park[®],⁵ C. E. Parker[®],¹ E. C. Pollacco[®],⁷ B. T. Roeder,¹ M. Roosa[®],^{1,3} A. Saastamoinen,¹ and D. P. Scriven[®],^{1,3}
¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
²School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
³Department of Physics & Astronomy, Texas A&M University, College Station, Texas 77843, USA
⁴Nuclear Solutions Institute, Texas A&M University, College Station, Texas 77843, USA
⁵Center for Exotic Nuclear Studies, Institute for Basic Science, 34126 Daejeon, Republic of Korea
⁶Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
⁷IRFU, CEA, Université Paris-Saclay, F-91191 Gif-Sur-Yvette, France

Background: Cluster states in ¹³N are extremely difficult to measure due to the unavailability of ${}^{9}B + \alpha$ elastic-scattering data.

Purpose: Using β -delayed charged-particle spectroscopy of ¹³O, clustered states in ¹³N can be populated and measured in the $3\alpha + p$ decay channel.

Methods: One-at-a-time implantation and decay of ¹³O was performed with the Texas Active Target Time Projection Chamber. $149\beta 3\alpha p$ decay events were observed and the excitation function in ¹³N reconstructed **Results:** Four previously unknown α -decaying excited states were observed in ¹³N at an excitation energy of 11.3, 12.4, 13.1, and 13.7 MeV decaying via the $3\alpha + p$ channel.

Conclusions: These states are seen to have a $[{}^{9}B(g.s) \otimes \alpha/p + {}^{12}C(0_{2}^{+})], [{}^{9}B(\frac{1}{2}^{+}) \otimes \alpha], [{}^{9}B(\frac{5}{2}^{+}) \otimes \alpha]$, and $[{}^{9}B(\frac{5}{2}^{+}) \otimes \alpha]$ structure, respectively. A previously seen state at 11.8 MeV was also determined to have a $[p + {}^{12}C(g.s.)/p + {}^{12}C(0_{2}^{+})]$ structure. The overall magnitude of the clustering is not able to be extracted, however, due to the lack of a total width measurement. Clustered states in ${}^{13}N$ (with unknown magnitude) seem to persist from the addition of a proton to the highly α -clustered ${}^{12}C$. Evidence of the $\frac{1}{2}^{+}$ state in ${}^{9}B$ was also seen to be populated by decays from ${}^{13}N^{*}$.

This obtained state corresponds to the state observed at 11.3 MeV

Hoyle-analog state in ¹³N

Gas-like states in ¹¹C

Editors' Suggestion Featured in Physics

Observation of the Exotic 0^+_2 Cluster State in ⁸He

Z. H. Yang^{1,2,*,†} Y. L. Ye^{1,*,‡} B. Zhou^{3,4,5} H. Baba,² R. J. Chen,⁶ Y. C. Ge,¹ B. S. Hu^{1,1} H. Hua,¹ D. X. Jiang,¹ M. Kimura,^{2,5,7} C. Li,² K. A. Li,⁶ J. G. Li⁰,¹ Q. T. Li⁰,¹ X. Q. Li,¹ Z. H. Li,¹ J. L. Lou⁰,¹ M. Nishimura,² H. Otsu,² D. Y. Pang,⁸ W. L. Pu,¹ R. Qiao,¹ S. Sakaguchi,^{2,9} H. Sakurai,² Y. Satou,¹⁰ Y. Togano,² K. Tshoo,¹⁰ H. Wang,^{2,11} S. Wang,² K. Wei,¹ J. Xiao,¹ F. R. Xu[®],¹ X. F. Yang[®],¹ K. Yoneda,² H. B. You,¹ and T. Zheng¹ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ²RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, - Shanghai-200433,-China-Research Center for $\Phi(\boldsymbol{B}, b_n) \propto \mathcal{A} \left\{ \exp \left[-\frac{4\boldsymbol{\xi}_1^2}{3\boldsymbol{B}^2} - \frac{3\boldsymbol{\xi}_2^2}{2\boldsymbol{B}^2} \right] \times \phi_{\alpha}(b_{\alpha})\phi_{\frac{1}{2}n}(b_n)\phi_{\frac{2}{2}n}(b_n) \right\},^a \right\}$ PTEP Prog. Theor. Exp. Phys. 2018, 041D01 (10 pages) DOI: 10.1093/ptep/pty034 $\Psi(\mathbf{r}) = \Phi_{g}(\mathbf{r}_{a})\Phi_{\text{int}}(\mathbf{r}_{i} - \mathbf{r}_{i})$ Letter New trial wave function for the nuclear cluster $\Psi_{\text{new}} = \widehat{L}_{n-1}(\beta)\widehat{G}_n(\beta_0)\widehat{D}(Z)\Phi_0(r)$ structure of nuclei $= \int d^{3}\widetilde{T}_{1} \cdots d^{3}\widetilde{T}_{n-1} \exp\left[-\sum_{i=1}^{n-1} \frac{\widetilde{T}_{i}^{2}}{\beta_{i}^{2}}\right] \int d^{3}R_{1} \cdots d^{3}R_{n} \exp\left[-\sum_{i=1}^{n} (\frac{A_{i}}{\beta_{0}^{2} - 2b_{i}^{2}})(R_{i} - Z_{i} - T_{i})^{2}\right] \Phi_{0}(r - R)$ Bo Zhou* Institute for International Collaboration, Hokkaido University, Sapporo 060-0815, Japan Department of Physics, Hokkaido University, Sapporo 060-0810, Japan $= n_0 \exp[-\frac{A}{\beta_0^2} X_g^2] \mathcal{A}\{\prod_{i=1}^{n-1} \exp[-\frac{1}{2B_i^2} (\boldsymbol{\xi}_i - \boldsymbol{S}_i)^2] \prod_{i=1}^n \phi_i^{\text{int}}(b_i)\}.$ *E-mail: bo@nucl.sci.hokudai.ac.jp Received December 5, 2017; Revised February 21, 2018; Accepted March 2, 2018; Published April 16, 2018 g center-of-mass problem is given. In the new approach, the widths of the a tool for studying the cluster correlations

Triple α process

Nuclear astrophysics

- Bridging the gaps at A = 5 and A = 8
- Generation of elements with A > 8

Triple- α process

Pei Luanhong, et al., SCIENTIA SINICA Physica, Mechanica & Astronomica, 2024, ISSN 1674-7275

Sequential picture and Direct picture

Sequential picture (级联) Intermediate state: X

$$a + b \to X$$
$$X + c(\to A^*) \to A + \gamma$$

Characteristics:

- 1. Specific: assumed the reaction mechanism
- 2. Integrated with experiments: two-body cross-section, resonance

$$N_A^2 \langle abc \rangle \sim N_A^2 \frac{\hbar}{\Gamma_\alpha(\mathbf{X})} \langle ab \rangle \langle \mathbf{X}c \rangle$$

• NACRE

Direct picture

$$a + b + c \rightarrow A + \gamma$$

Characteristics:

- I. General
- 2. Three-body non-resonant process (Important at low temperatures)
- **3.** Complicated calculation (Three-body scattering state)

$$\begin{split} \langle abc \rangle &= (1 + \Delta_{abc}) \frac{1}{\omega_i} \left(\frac{4\pi^2 \beta^2 \hbar^4}{\mu} \right)^{3/2} \frac{8\pi (\lambda + 1)}{\hbar \lambda [(2\lambda + 1)!!]^2} \\ &\times \sum_{M_f \mu} \sum_i e^{-\beta E_i} \left(\frac{E_i - E_f}{\hbar c} \right)^{2\lambda + 1} \left| \langle \Phi_f | M_{\lambda \mu} | \Phi_i \rangle \right|^2, \end{split}$$

- Transformed harmonic oscillator method
- Three-body Breit-Wigner
- Imaginary-time method

Imaginary-time method

Introduce inverse temperature

 $\beta = 1/(k_B T)$ Reaction rate (from **direct picture**)

$$\begin{split} \langle abc \rangle &= (1 + \Delta_{abc}) \frac{1}{\omega_i} \left(\frac{4\pi^2 \beta^2 \hbar^4}{\mu} \right)^{3/2} \frac{8\pi (\lambda + 1)}{\hbar \lambda [(2\lambda + 1)!!]^2} \\ &\times \sum_{M_f \mu} \sum_i e^{-\beta E_i} \left(\frac{E_i - E_f}{\hbar c} \right)^{2\lambda + 1} \left| \langle \Phi_f | M_{\lambda \mu} | \Phi_i \rangle \right|^2, \end{split}$$

$$\sim \sum_{i} e^{-\beta E_{i}} \left(\frac{E_{i} - E_{f}}{\hbar c} \right)^{2\lambda+1} \left\langle \Phi_{f} \left| M_{\lambda\mu} \left| \Phi_{i} \right\rangle \left\langle \Phi_{i} \right| M_{\lambda\mu}^{+} \right| \Phi_{f} \right\rangle \right\rangle$$
Scattering state

Purpose: remove initial state (Scattering state)

The spectral representation of H

$$f(\hat{H}) = \sum_{n \in \text{bound}} f(E_n) |\Phi_n\rangle \langle \Phi_n| + \sum_{i \in \text{scattering}} f(E_i) |\Phi_i\rangle \langle \Phi_i|,$$

T. Akahori, et al, Phys. Rev. C 92, 022801(R) (2015) K. Yabana et al., Phys. Rev. C 85, 055803 (2012) Take f(x) as the following form

$$f(x) = e^{-\beta x} \left(\frac{x - E_f}{\hbar c}\right)^{2\lambda + 1}$$

Therefore

$$\sum_{i} e^{-\beta E_{i}} \left(\frac{E_{i} - E_{f}}{\hbar c} \right)^{2\lambda + 1} |\Phi_{i}\rangle \langle \Phi_{i}|$$
$$= f(\widehat{H}) \left(\mathbf{1} - \sum_{n \in \text{bound}} |\Phi_{n}\rangle \langle \Phi_{n}| \right)$$

Introduce projection operator

$$\hat{P} = \mathbf{1} - \sum_{n \in bound} |\Phi_n\rangle \langle \Phi_n|$$

Imaginary-time reaction rate

$$\langle abc \rangle = (1 + \Delta_{abc}) \frac{1}{\omega_i} \left(\frac{4\pi^2 \beta^2 \hbar^4}{\mu} \right)^{3/2} \frac{8\pi (\lambda + 1)}{\hbar \lambda [(2\lambda + 1)!!]^2} \\ \times \left\langle \Phi_f \right| M_{\lambda\mu} e^{-\beta H} \left(\frac{H - E_f}{\hbar c} \right)^{2\lambda + 1} \hat{P} M_{\lambda\mu}^{\dagger} \Phi_f \rangle, \tag{62}$$

Scattering state + Bound state - Bound state

 $\alpha \alpha n$ process

The contributions from the different states to the reaction rate

J. Casal, et al., Phys. Rev. C 90, 044304 (2014)

T. Yamada and Y. Funaki, Phys. Rev. C 92, 034326 (2015)

Summary and Prospect

rich clustering structure

Evolution of structure of ²⁰**Ne**

explore novel clustering structure of light nuclei

理论物理专款上海核物理理论研究中心 Shanghai Research Center for Theoretical Nuclear Physics

Thanks for my collaborators

and your attentions.

