Plans for direct measurement of ¹⁰Be destruction reaction

Minju Kim Center for Exotic Nuclear Studies Institute for Basic Science

Importance of ¹⁰Be

Table 1 Yields of short-lived radionuclides from an 11.8-solar-mass core-collapse supernova.							
R/I τ_R (Myr) Y_R (M_{\odot}) X_I^{\odot} (N_R/N_I)ESS							
				Data	Case 1	Case 2	Case 3
¹⁰ Be/ ⁹ Be	2.00	3.26(-10)	1.40(-10)	(7.5±2.5)(-4)	6.35(-4)	6.35(-4)	5.20(-4)
26AI/27AI	1.03	2.91(-6)	5.65(-5)	(5.23 ± 0.13)(-5)	1.02(-5)	9.90(-6)	5.77(-6)
36CI/35CI	0.434	1.44(-7)	3.50(-6)	~(3-20)(-6)	2.00(-6)	1.45(-6)	6.15(-7)
⁴¹ Ca/ ⁴⁰ Ca	0.147	3.66(-7)	5.88(-5)	(4.1±2.0)(-9)	3.40(-9)	2.74(-9)	2.26(-9)
⁵³ Mn/ ⁵⁵ Mn	5.40	1.22(-5)	1.29(-5)	(6.28±0.66)(-6)	4.04(-4)	6.39(-6)	6.16(-6)
⁶⁰ Fe/ ⁵⁶ Fe	3.78	3.08(-6)	1.12(-3)	~1(-8);(5-10)(-7)	9.80(-7)	9.80(-7)	1.10(-7)
107Pd/108Pd	9.38	1.37(-10)	9.92(-10)	(5.9 ± 2.2)(-5)	6.27(-5)	6.27(-5)	5.72(-5)
¹³⁵ Cs/ ¹³³ Cs	3.32	2.56(-10)	1.24(-9)	~ 5(-4)	7.51(-5)	7.51(-5)	3.18(-5)
182Hf/180Hf	12.84	4.04(-11)	2.52(-10)	(9.72±0.44)(-5)	7.36(-5)	7.36(-5)	6.34(-6)
		8.84(-12)			1.60(-5)	1.60(-5)	2.37(-6)
²⁰⁵ Pb/ ²⁰⁴ Pb	24.96	9.20(-11)	3.47(-10)	~1(-4);1(-3)	1.27(-4)	1.27(-4)	7.78(-5)

P. Banerjee et al, Nature Com. 7:13639 (2016)

Comparisons are made to the corresponding isotopic ratios deduced from meteoritic data. Case 1 estimates are calculated from equation (1) using the approximate best-fit f and Δ of Fig. 2, assuming no fallback. The higher and lower yields for ¹⁸²H are obtained from the laboratory and estimated stellar decay rates⁴⁷ of ¹⁸³H, respectively. Case 2 (3) is a fallback scenario in which only 15% of the innermost 10.2 x 10⁻² solar mass) of shocked material is ejected. With guidance from refs 22,31, well-determined data are quoted with 2*o* errors, while data with large uncertainties are preceded by '~'. Note that r(-*y*) denotes x 10⁻⁻¹ Data references are: ¹⁰Be (refs 14,16,18,19), ²⁶Al (refs 2,32), ³⁶Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 33-35), ⁴¹Ca (refs 36,37), ⁵³Mn (ref. 38), ⁶⁰Fe (refs 39,40), ¹⁰⁷Pd (ref. 41), ¹³⁵Cs (ref. 42), ¹³²Cl (refs 30, ¹⁰²Fe), ¹⁰²Fe (refs 30, ¹⁰²Fe), ¹⁰²Fe), ¹⁰²Fe (refs 30, ¹⁰²Fe), ¹⁰²Fe), ¹⁰²Fe (refs 30, ¹⁰²Fe), ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe), ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe, ¹⁰²Fe),

- 10 Be (T_{1/2} ~ 1.4 Myrs) has been detected with the satellite-borne experiment PAMELA
 - Ratio between radioactive nuclides and stable isotopes gives evidence of the Early Solar system
- Solar system formation was triggered by gravitational collapse.
 - Low-in mass and explosion energy Supernova is one of the candidates.

Production and destruction ¹⁰Be

- ¹⁰Be produced by v process during Core-collapse supernova
 - ${}^{12}C(v_{x} v'_{x}pp){}^{10}Be and {}^{12}C(\bar{v}_{e} e^{+}np){}^{10}Be$
- ¹⁰Be destruction mechanism
 - ${}^{10}\text{Be}(p,\alpha)^7\text{Li}$ and ${}^{10}\text{Be}(\alpha,n)^{13}\text{C}$ reaction

Importance of ¹⁰Be(p, α)⁷Li reaction

A. Sieverding, et al., Phys. Rev. C 106, 015803 (2022)

- Sensitivity study was performed to investigate ¹⁰Be abundance
 - In different mass model and neutrino energy case
- ${}^{10}\text{Be}(p,\alpha)^7\text{Li}$ is main destruction mechanism of ${}^{10}\text{Be}$

Previous ¹¹B energy level studies

Y. Ayyad et al., Phys. Rev. Let. 123, 082501 (2019)

Y. Ayyad et al., Phys. Rev. Let. 129, 012501 (2022)

E_{CM} (MeV)

E. Lopez-Saavedra et al., Phys. Rev. Let. 129, 012502 (2022)

A. N. Kuchera et al., Phys. Rev. C 110, 054319 (2024)

- Four different experiment with different method
 - ¹¹Be(β⁻p) decay
 - ${}^{10}\text{Be}(p,p){}^{10}\text{Be}$ scattering
 - ${}^{10}\text{Be}(d,n){}^{11}\text{B}^*$ transfer reaction and decay measurement
 - ${}^{10}B(d,p){}^{11}B^*$ transfer reaction
- Energy level was identified near the proton threshold (p_{th} = 11.23 MeV)
 - $E_x = 11.42 \pm 0.02 \text{ MeV} (E_r = 0.19 \text{ MeV})$
 - Large proton width

Korea-China joint workshop for rare isotope physics

- Gamow Window at T = 1 GK
 - $E_r = 0.11 0.48$ MeV
 - $E_x = 11.34 11.71$ MeV

¹¹B Excitation Energy [MeV]

Previous ¹⁰Be(p, α)⁷Li reaction rate

Ex [MeV]	Jπ	Γ _p [KeV]	Γ _α [KeV]
11.27	9/2+	1.0E-15	110
11.42	1/2+	6,11	6,1
11.49	3/2+	1.0E-4	93
11.60	5/2+	1.0E-5	90
11.89	5/2-	1.0E-4	100
12.04	7/2+	1.0E-3	500
12.55	1/2+	100	105

- ${}^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate was calculated
 - Sensitive to the energy level at $E_x = 11.42$ MeV
- Could not explain observed values in meteorites
- For unknown partial width, the reduced widths are adopted as $\sim 0.01 \gamma_w^2$ Wigner limit

Experimental method and secondary beam production at CRIB

Primary beam	E (MeV/u)	Intensity (pnA)	D ₂ target
¹¹ B (<u>q</u> = 5 ⁺)	5.0	700	90 K, 500 Torr, 2.5 μm Havar
(previous)	(5.0)	(700)	(90 K, 400 Torr, 2.5 μm Havar)
Secondary beam	E (MeV/u)	Intensity (pps)	Purity
¹⁰ Be at F3 target	2.15 ± 0.05	2.5 × 10 ⁴	> 95%
(previous)	(2.49 ± 0.03)	(2.0 × 10 ⁴)	(~95%)

- ${}^{10}\text{Be}(p,\alpha)^7\text{Li}$ direct reaction measurement
 - Thick target method
 - Inverse kinematics
- ¹⁰Be RI beam produced at CRIB to measure ${}^{10}\text{Be}(\alpha,\alpha){}^{10}\text{Be}$ reaction
- Expected ¹⁰Be secondary RI beam
 - Energy : 2.15 MeV/u
 - Intensity : 2.5×10^4 pps
 - Purity : 95 %
- PPACs
- Active target TPC (AToM-X)
 - CH₄ at the pressure of 180 Torr

Experimental condition of AToM-X

80

Korea-China joint workshop for rare isotope physics

Yield estimation and Beam time

Expected counts

	$E_{\rm r}$ = 0.2 MeV	$E_{\rm r}$ = 1.3 MeV
$\Gamma_{\rm p}$ = 6 KeV, Γ_{α} = 6 keV	230	1620
$\Gamma_{\rm p}$ = 11 KeV, Γ_{α} = 1 keV	70	1610

- Yield = $\boldsymbol{\sigma} \cdot \boldsymbol{I} \cdot \boldsymbol{N} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{t}$
 - σ = cross section
 - ϵ = Efficiency
 - *t* = Times
- Reaction cross section calculated by AZURE
- Efficiency based on simulation
- Beam time on target : 10 days for ~ 10 % statistical uncertainty

• I

= Beam Intensity

• **N** = Number of target

NP2412-AVF81

Title: The first direct measurement of ${}^{10}Be(p,\alpha)^7Li$ reaction cross section

Spokesperson(s): Minju Kim

Approved — Grade A 13.5 days

Plan to perform in 2026

Previous ¹⁰Be(α, *n*)¹³C reaction study

A. Sieverding, et al., Phys. Rev. C 106, 015803 (2022)

2025.Julv.8

P.J. Haigh et al., Phys. Rev. C 78, 014319 **(2008**)

TABLE VII. Proposed energy levels of ¹⁴C for $E_x > 11.66$ MeV. The second panel shows the indicated levels taken from the ¹³C(*n*, *n*) measurement of Ref. [23] and the latest compilation [24]. The fifth panel shows a compilation of the ¹⁴C states which are observed to decay via α -emission. Evidence for the α -decay of these states is from ⁷Li(⁹Be, ¹⁰Be + α) [25], ¹⁴C(¹³C, ¹⁰Be + α) [26] and ¹⁴C(¹⁴C, ¹⁰Be + α) [27] measurements.

This	s work		[23,24]		2n transfe	er [18]	${}^{13}C(\vec{p},\pi)$	+) [28]	⁹ Be(⁷ Li	,d) [18]	States w decay [hich α- 25–27]
E _x (MeV)	J^{π}	E_x (MeV)	J^{π}	Ref.	E_x (MeV)	J^{π}	E_x (MeV)	J^{π}	E_x (MeV)	J^{π}	E _x (MeV)	Ref.
		11.666	4-	[24]	11.66	4-	11.7	4-	11.66	4-		
11.73	$0^{-}, 1^{-}, 2$	- 11.73	5-	[24]	11.73(3)	4+			11.73	4+		
		11.9(3)	(1^{-})	[23]								
		12.20	1-	[23]								
		12.61	2-	[23]					12.58	(3-)		
		12.863		[24]					12.86			
12.96	$0^{-}, 2^{-}, 3$	- 12.963	(3^{-})	[24]	12.96(4)	3-	12.96		12.96			
		(13.50)		[24]								
		13.7	2 -	[23]	13.7(1)		13.56					
14.1					14.0(1)				14.03		14.3(1)	[27]

- Several energy levels in ¹⁴C have been studied
- Spins-Parities and partial widths of levels were not constrained.
- Gamow Window at T = 1 GK
 - $E_r = 0.41 0.97$ MeV
 - $E_x = 12.42 12.98$ MeV

¹⁰Be(α , *n*)¹³C reaction measurement : neutron measurement

2025.July.8

- AToM-X + neutron detector array
 - Benchmarked TexAT + TexNeut
- Neutron will be measured by neutron detector
- Beam and Heavy recoil will be measured by AToM-X
- ⁴He:CO₂ (9:1) mixture gas at the pressure of 60 Torr

12

¹⁰Be(α , *n*)¹³C reaction measurement : recoil measurement

- Multi Sampling Ionization Chamber (MuSIC) •
 - ⁴He active gas target have been used •
 - Measure α -particle induced reactions ٠
 - When the nuclear reaction occurs, Z-number changes and slowed down. •
 - \rightarrow Distinctive Bragg curves

3.2

3

3.4

2.2

8 9 10 11 12 13 14 15 16 1

Strip

2.4

2.6

VOICE (Vertically Oriented-wire Ionization Chamber with sEgmentation)

• VOICE

- Newly developed MUSIC at CENS
- Vertical (tilted) wire electrodes
- 10 um thick gold coating tungsten wire
- Commissioning experiment of ${}^{40}\text{Ar}$ + α reaction will be performed at RAON

Yield estimation for ${}^{10}Be(\alpha, n){}^{13}C$

- Reaction cross section calculated by TALYS
- Yield = $\boldsymbol{\sigma} \cdot \boldsymbol{I} \cdot \boldsymbol{N} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{t}$
 - σ = cross section

• I = Beam Intensity

• ϵ = Efficiency

- N = Number of target (660 Torr and 20 mm for each setup)
- **t** = Times (5 days for each setup)
- It is possible to measure down to the 0.5 MeV region
- Plan to submit proposal for ¹⁰Be(α , n)¹³C reaction measurement using the VOICE

Summary

- ¹⁰Be abundance is important to understand the Solar system.
- ${}^{10}\text{Be}(p,\alpha)^7\text{Li reaction}$
 - Main destruction mechanism
 - We propose ${}^{10}\text{Be}(p,\alpha){}^{7}\text{Li}$ direct measurement at CRIB.
 - **AToM-X** will be used to measure ${}^{10}\text{Be}(\rho,\alpha){}^{7}\text{Li}$ reaction.
 - A total of 13.5 days of beam time was approved (NP2412 AVF 81)
 - Plan to perform in 2026
- ${}^{10}\text{Be}(\alpha, n){}^{13}\text{C}$ reaction
 - One of important destruction mechanism
 - Combine neutron detector and ATTPC can be used for measurement.
 - **VOICE** is under developed to measure (α, n) reaction.
 - Will submit the proposal using VOICE at CRIB in RIKEN

Thank you for your attention

Backup

Reactions

Reaction Q value

Previous study of ⁷Li(α , α)⁷Li experiments

(b) 10² elastic Diff. cross section (mb/sr) ԴԴՆՆԱսիսն, 10 🛓 Inelastic 1 10 1.5 2 2.5 3.5 4 4.5 5 3 Center-of-mass energy (MeV)

H. Yamaguchi et al., Phys. Rev. C 83, 034306 (2011)

• In elastic channel should be negligible

Resonance parameters

Ex [MeV]	Jπ	Γ _p [KeV]	Γ _α [KeV]
11.272	9/2+	1.0E-15	110
11.425	1/2+	6,11	6,1
11.490	3/2+	1.0E-4	93
11.600	5/2+	1.0E-5	90
11.893	5/2-	1.0E-4	100
12.040	7/2+	1.0E-3	500
12.550	1/2+	100	105

A. Sieverding, et al., Phys. Rev. C 106, 015803 2022

For unknown partial width, the reduced widths are adopted as $\sim 0.01 \gamma_w^2$ Wigner limit

Background from Carbon

1. Yields of residual nuclei

Z	S N	Α	events	percent	x-section(mb)
1(0 11	21 Ne	771	77.1%	1.8
9	12	21 F	14	1.4%	0.0326
8	3 10	18 O	210	21%	0.489
8	9	17 O	5	0.5%	0.0117
TOTAL			1000	100	2.33062

- Fusion reaction cross section calculation using PACE4
 - Quantum-mechanical model
 - Bombarding energy: 2.2 MeV
 - ${}^{10}\text{Be}({}^{12}\text{C},\alpha){}^{18}\text{O}$

22

¹⁰Be(α , *n*)¹³C reaction measurement : neutron measurement

Adopted from Dustin P. Scriven presentation "TexAT-TPC and a Neutron Detector Array. TexNeut

- AToM-X + neutron detector array
 - Benchmarked TexAT + TexNeut

Previous MUSIC results

Nucl. Instrum. Meths. A 799, 197-202 (2015)

Vertical Ionization chamber

Nucl. Instrum. Meths. A 751, 6 (2014)

Jou. Kor. Phys. Soc. 68, 10 (2016)

Position Sensitive Electrode

- Multiple active regions along with the beam trajectory
- Shorter drift length \rightarrow Capability to manage high-rate beams (>10⁶ pps)
- Some IC detectors are equipped with position-sensitive strips.

Construction of VOICE

- Gas control system
- Pumping station
- Tilted-wire type electrodes
- Beam monitoring devices

26

KPS.Fall.Meeting

Design of VOICE

- Ionization Chamber part
 - Vertical(tilted)-wire type electrode
 - Frisch Grid
- Beam monitoring
 - Silicon Surface Barrier detector
 - Beam Viewer

Korea-China joint workshop for rare isotope physics

27

VOICE status

- A VOICE (Vertically Oriented-wire Ionization Chamber with sEgmentation) is under development
- VOICE can be used for beam particle identification and nuclear reaction measurement
 - Beamline detector for particle identification.
 - measure various (α, ρ) and (α, n) reactions
- In-house test is processing
- Simulation code based on NPTool is being developed
- Commissioning experiments and further physics experiments are expected in the following years.

¹⁰Be production at Catania tandem

Table 1

Characteristics of the present 10 Be beam compared with the ones of other 10 Be beams developed worldwide. NF means that the corresponding information has not been found in the considered reference. Intensities in [20,22] were intentionally reduced due to the use of an active target. The intensity of [35] was also intentionally reduced, being the available one a factor 10 larger than the one used.

Production	Laboratory	Energy	Purity	Intensity	Ref.
method		MeV	%	ions \times s ⁻¹	
Fragmentation	GANIL	~300	95	1×10^{4}	[15,16]
Fragmentation	NSCL	800-1200	NF	1×10^{5}	[17]
Fragmentation	NSCL	680	NF	200-400	[20]
Fragmentation	RIKEN	600	95	3×10^{4}	[18]
Fragmentation	HIRFL	72	92	5×10^{3}	[19]
Transfer	Notre Dame	38-44	NF	3×10^{4}	[21]
Transfer	Notre Dame	35	42-93	1×10^{2}	[22]
Transfer	São Paulo	23	3	$1 \times 10^{3} \cdot 1 \times 10^{5}$	[23,36]
				(× µA prim. beam)	
Transfer	RIKEN	26	95	2×10^{4}	[24]
Transfer	ANU	40	25	1×10^{4}	[37]
				(× µA prim. beam)	
ISOL	ISOLDE CERN	29	100	1×10^{6}	[35]
ISOL	TRIUMF	41	100	1×10^{7}	[38]
OFF-LINE	INFN-LNS	47-54	99.8	2.5×10^{9}	Pres. work
OFF-LINE	HRIBF-ORNL	25-107	>99	$1-5 \times 10^{6}$	[1,39]

Fig. 4. DE-E spectrum measured, inside the CT2000 scattering chamber, with a telescope placed at zero degree hit by the ¹⁰Be beam with an intensity reduced to about 100 pps. The spectrum shows a pure ¹⁰Be beam with a minor ¹⁰B contamination of the order of 0.15%.

