Jul 6 – 10, 2025 Benisiam Hall, Benikea Hotel, Jeju island Asia/Seoul timezone

Time Projection Chambers for nuclear astrophysics studies

Ningtao Zhang, MATE Collaboration

Institute of Modern Physics, Chinese Academy of Sciences

MATE TPC: Multi-purpose Active-target Time projection chamber for nuclear Experiments

07/2025

Motivation

Development of MATE TPC

• pMATE \rightarrow MATE \rightarrow µMATE \rightarrow Cylindrical MATE

Experimental results

Summary

Reaction and structure studies using TPC

Motivation(astrophysics):
1, Direct reactions: (α,p), (p,α)
2, Fusion: intense beam(CC,CO,OO), neutron-rich RIB
3, Weak interaction: beta decay, (d,2p), (³He,t)
4, Fission(R): (p,p*), (p,2p)

5, Giant resonance: (p,p*), (d,d*)

6, Nuclear structure: decay, transfer, scattering

Prototype and MATE TPC: timeline

1024ch pMATE (prototype)

GEM by Q. Liu (UCAS)

Active volume:

 $10cm(W) \times 20cm(L) \times 25cm(H)$

- Field cage: 3 layers of Be-Cu wires (Φ0.1mm)
- Double THGEMs: thickness 0.3mm
- Rectangular pad: 3×6mm², 1024 pads

Calibration

(cm)

 10^{3}

10²

5 Y (cm)

13288

0.8533

0.2989

173.6 / 14

Full scale MATE-TPC

TPC

- ✓ 30x30x20(h) cm³
- ✓ Double-layer segmented THGEM
- ✓ 3800 readout channels
- ✓ GET electronics

Si array

- Three silicon walls
- Sensitive area: 100×100 mm²
- Thickness: 600 μm and 150 μm
- Angular coverage ~10%

X.B. Li et al., Nuclear Science and Techniques 35 (2024) 131

Alpha measurement by MATE

Low-pressure Micromegas-based TPC (µMATE)

Be used at ~70pµA experiment!

Micromegas provided by Zhiyong Zhang*(USTC)

Cylindrical TPC (under design)

Suppress delta rays in RIB experiments
 Achieve better particle identification
 Extend the measured dynamic energy range

Commissioning experiment: ¹²C+¹²C fusion near coulomb barrier

Experiments

- ¹²C⁴⁺ beam: 4.9 AMeV (HIRFL, IMP)
- TPC gas: C₄H₁₀ at 50, 100 mbar
- Injection rate: 200-400 cps
- Beam time: 31.2 hours

MATE collaboration

Tracking for different channels

X.Y. Wang et al., CPC46, 104001(2022)

Experimental results

¹²C+¹²C→¹²O+3a

- ✓ Consistent with statistical calculations at E_{cm}>15 MeV
- ✓ At E_{cm}<15 MeV, other mechanisms are needed

¹²C+¹²C→¹⁶O+⁸Be

- ✓ At E_{cm}>3MeV, direct atransfer reaction dominates
- ✓ At stellar energy(<3MeV),
 ⁸Be decay can be detected by TPC

Study of ^{11,12}C+α scattering at high intense beams

14

Beam rate tests and preliminary results

Direct measurement of ¹²**C+**¹²**C**

¹²C: 0.38-0.63 MeV/u Current: upto 80 pμA TPC gas: He mixture Pressure: 90-100 mbar

Background suppression

17

cMATE: range, angular resolution (design on simulation)

cMATE: range, angular resolution (design on simulation)

19

cMATE in solenoid (simulation)

- MATE TPC have been constructed
- □ ¹²C+¹²C, ¹⁹O+¹²C fusion measurements with beam rate ~ 100 cps
- \Box ¹⁴N¹⁴O(α ,p) (challenging at 10⁵ cps), ¹¹C(α , α ') (fine) measurements at 10⁵ cps
- □ ¹²C+¹²C direct measurement at stellar energies with beam intensity ~ 70 pµA
- To develop Cylindrical TPC working inside solenoid (under design)
- Decay measurement (in plan)
 - Gating Grid has been tested, but needs improvement

¹²C(p,p') test at Peking University

MATE collaboration

Trigger efficiency: make a reliable trigger

GEM signal (recoil region) as trigger for GET
 Gating wires will be used to tune beam region

Cylindrical TPC

¹⁹O+¹²C reaction measurement at RIBLL

- Primary beam: ¹⁸O⁸⁺, 6.17MeV/u, 260enA (HIRFL)
- Primary target: D₂ gas cooled by LN₂ at 150mbar, 500mbar
- Second beam: ¹⁹O^{7+,} ~10³ pps
 - □ ¹⁸O(d,p)¹⁹O reaction
 - □ ¹⁹O purity upto 95%
- □ TPC(pMATE) at 50 and 100 mbar isobutane

Segmented THGEM

Collaboration with Shinsuke Ota-san (CNS & RCNP)

- GEM area: 280x300mm²
- GEM thickness: 400 μm
- Beam region and recoil regions are isolated
- Recoil region: light particles (gain > 1000)
- Beam region: beam particles (gain < 100)
- Gain difference in these two regions > 10