

Development of a new active target TPC: ATOM-X

Soomi Cha (車修美)

Center for Exotic Nuclear Studies, Institute for Basic Science on behalf of AToM-X collaboration

2025/07/07

Korea-China joint workshop for rare isotope physics

Origin of Elements: Nucleosynthesis during the stellar evolution

This periodic table depicts the primary source on Earth for each element. In cases where two sources contribute fairly equally, both appear.

Credit: NASA's Goddard Space Flight Center

◓ᄀᅝ

Origin of Elements: Nucleosynthesis during the stellar evolution

- Nuclear physics input for understanding:
 - ✓ Nucleosynthesis processes
 - ✓ Characteristics of stellar environments

Importance of (α, p) reactions for astrophysics

- (α, p) reaction rates play an important role in understanding: ٠
 - ✓ Light curve, burst ashes of the X-ray burst
 - ✓ Nucleosynthesis in the core-collapse supernovae

Juminosity

Reaction Rate Variations that Affect Three or More Isotopes of Interest

Reaction]	Number of Isotopes Affected
$^{12}C(\alpha,\gamma)^{16}O$		8
$\alpha(2\alpha,\gamma)^{12}C$		8
16O(12C,p)27Al		8
$^{13}N(\alpha,p)^{16}O$		7
$^{27}\text{Al}(\alpha,\mathbf{n})^{30}\text{P}$		6
20 Ne $(\alpha, \gamma)^{24}$ Mg		6
$^{44}\text{Ti}(\alpha, p)^{47}\text{V}$		5
$^{42}Ca(\alpha,\gamma)^{46}Ti$		5
$^{16}O(^{12}C,\alpha)^{24}Mg$		5
$^{48}Cr(\alpha, p)^{51}Mn$		4
23 Na(α ,p) 26 Mg		4
${}^{53}\text{Fe(n,p)}{}^{53}\text{Mn}$		3
${}^{52}\text{Fe}(\alpha, p){}^{55}\text{Co}$		3
${}^{33}S(n,\alpha){}^{30}Si$		3
${}^{30}\text{Si}(p,\gamma){}^{31}\text{P}$		3
28 Si(n, γ) 29 Si		3
28 Al(p, α) 25 Mg		3
²⁷ Si(n, ¹² C) ¹⁶ O		3
$^{27}Al(\alpha,p)^{30}Si$		3
$^{26}Mg(\alpha,n)^{29}Si$	K Hermansen et a	a/ 3
$^{25}Mg(p,\gamma)^{26}Al$		3
$^{25}Mg(n,\gamma)^{26}Mg$	ApJ (2020)	3
$^{25}Mg(\alpha,n)^{28}Si$		3

- Active target TPC
 - ✓ Detection gas plays as a reaction target
 - ✓ 3D tracking of charged particles (like 3D camera)
 - \rightarrow reaction vertex measurement available
- Challenges for direct (*α*,*p*) measurements
 - $\checkmark\,$ High detection efficiency
 - ✓ High beam rate endurable (~10⁵ pps)
 - $\checkmark\,$ Good enough position and energy resolution

Development of Active Target detectors at CENS

Successfully used for ¹⁴O(α,p)¹⁷F measurement ! <u>Tomorrow,</u> To the by Chaeveon Park ©

Korea-China joint workshop for rare isotope physics

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ Field cage
 - (Track measurement)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ Field cage (7
 - (Track measurement)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)
- Dimensions :
 - ✓ Chamber : 504(X) x 417(Y) x 504(Z) mm³
 - \checkmark Wings for signal (ZAP) feed through : 236(X) x 270(Y) x 390(Z) mm³
 - ✓ Assembly type→portable!

- Purpose?
 - ✓ Direct measurement of astrophysically important reactions : (α ,p), (α ,n), ...
 - ✓ Elastic/Inelastic scatterings, fusion reactions, transfer reactions, charged particle decay, ...
- Target gas: He+CO₂, CH₄, C₄H₁₀, CO₂, CD₄, Ar, ...
- Components:
 - ✓ **Field cage** (*Track measurement*)
 - ✓ Micromegas
 - ✓ Silicon and Csl detectors (Energy, position measurement)
 - ✓ Chamber, frames, Electronics(GET), DAQ, Softwares,
 - ✓ 5658 electronic channels in total (4608 from Micromegas &1050 from aux. detectors)
- Dimensions :
 - ✓ Chamber : 504(X) x 417(Y) x 504(Z) mm³
 - \checkmark Wings for signal (ZAP) feed through : 236(X) x 270(Y) x 390(Z) mm³
 - ✓ Assembly type→portable!

Now Developing

- Providing uniform electric field in the active volume
- PCB boards + Polycarbonate frame
- cathode + anode + side planes
- Type-1 : Au-plated tungsten wires on PCB → Transparent !
 ex) ³⁴Ar(α,p)³⁷K, ¹⁸Ne(α,p)²¹Na, ¹⁷F(α,p)²⁰Ne, ...

- Providing uniform electric field in the active volume
- PCB boards + Polycarbonate frame
- cathode + anode + side planes
- Type-1 : Au-plated tungsten wires on PCB → Transparent !
 ex) ³⁴Ar(α,p)³⁷K, ¹⁸Ne(α,p)²¹Na, ¹⁷F(α,p)²⁰Ne, ...

A part of side planes

A part of anode

- Providing uniform electric field in the active volume
- PCB boards + Polycarbonate frame
- cathode + anode + side planes
- Type-1 : Au-plated tungsten wires on PCB → Transparent !
 ex) ³⁴Ar(α,p)³⁷K, ¹⁸Ne(α,p)²¹Na, ¹⁷F(α,p)²⁰Ne, ...

To reduce a huge amount of space charges from the high intensity beam !

Korea-China joint workshop for rare isotope physics

CENS

Korea-China joint workshop for rare isotope physics

- Tracking charged particles with readout pixels (beam, recoils, ...)
- Micromegas as a chamber flange
- Drift electrons from the ionization are amplified b/w mesh & readout.
- pixel size : 4 x 4 mm²
 - ✓ Type-1 : Resistive
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)

Micromegas (front-inside chamber)

19

Test process

- ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
- \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
- \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
- ✓ Obtained the track using our newly-made field cage!

- Test process
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Obtained the track using our newly-made field cage!

- Test process
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Obtained the track using our newly-made field cage!

- Test process
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Obtained the track using our newly-made field cage!

- Tracking charged particles (beam, recoils, ...)
- Drift electrons from the ionization are amplified b/w GEM & mesh & readout pad.
 - ✓ **Type-1 : Resistive** (for AsAd board protection)
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)
- GEM foils for proper gains

- ✓ Three different GEM foils
 - Thick GEM (1000μm)
 - Thin GEM (256µm)
 - Thin GEM (256µm, different holes) HG : 140/70/50
 LG : 160/110/90
- ✓ Proper gains for each section by adjusting HVs (low gain for beam and heavy recoils / high gain for light ptcls)
- $\checkmark\,$ HV connections from Micromegas
- ✓ Gain calibration required

Silicon & CsI detector walls

- Measuring energy and position of charged particles or γ-rays
- Silicon detectors
 - ✓ X6 model using the resistive technique (1000-µm-thick) (Micron Semiconductor Co.)
 - ✓ 8 Junction strips (resistive), 4 Ohmic strips (normal)
 - \checkmark Position : (Q_H-Q_L) / (Q_H+Q_L), ~ 1mm (FWHM)
 - ✓ Energy : $Q_H + Q_L$, ~50 keV (FWHM) using 4-peak α emitting source

2025/07/07

X. Pereira-Lopez *et al.*, NIMB (2023) D. Kim *et al.*, NIMB (2022)

Silicon & CsI detector walls

- Measuring energy and position of charged particles or γ -rays
 - CsI(TI) + SiPM detectors S. Bae et al., NIMB (2023)
 - ✓ short rise time (~0.5µs)
 - $\checkmark\,$ large signal height $\rightarrow\,$ no preamp for GET
 - $\checkmark\,$ off-line test results :
 - ¹³⁷Cs γ-ray source ~ 12% (FWHM)
 - ²⁴¹Am α -source after thin air ~ 6% (FWHM)

Supporting frames of Si+CsI walls

2025/07/07

Korea-China joint workshop for rare isotope physics

- Analysis software package : LILAK (Low and Intermediate energy nucLear experiment Analysis toolKit)
 - ✓ task-based analysis toolkit
 - ✓ contains general classes for MC simulation, reconstruction (pulse shape analysis, Hough transform, RANSAC, ...), and so on.
- Garfield++ simulation for electric field (2D & 3D), electron drift, ...
- GEANT4 & NP tool simulation for kinematics, geometry, detection efficiency, ...

Physics plans

R.H. Cyburt et al., ApJ

Korea-China joint workshop for rare isotope physics

List of collaborators

Welcome to join our collaboration !

CENS, IBS

Korea Univ.

The Univ. of Tokyo

Texas A&M Univ.

CEA, Saclay

Ewha womans Univ.

IMP

PKU

Korea-China joint workshop for rare isotope physics

JAEA

Sungkyunkwan Univ.

> Background Image: Courtesy of Paul Montague "Neighbors" Astronomy photographer of the year 2023

2025/07/07

Summary

- Active Target Time Projection Chamber (AT-TPC) allows a precise measurement of nuclear reactions
 using rare isotope beams at the present and future nuclear physics facilities.
- Active Target TPC for Multiple nuclear physics eXperiments (AToM-X) is under development.
- AToM-X consists of a highly segmented Time Projection Chamber (TPC) using a Micromegas, a field cage, and solid state detectors.
- AToM-X enables the high resolution measurement of the 3-dimensional particle tracks, energy, and position with the high detection efficiency.
- Softwares for AToM-X including analysis toolkit (lilak) and simulations are under the development.
- In-house test is processing, and interesting experiments will be performed next year !

2022	2023	2024	2025		2026
	Detector Design	Manufac	Manufacturing, Assembly test Off-line test		
		Electronics tes	st & Software devel	opment	

Nuclear fusion of halo nucleus ⁶He

•

⁶He

Characteristics of halo nuclei

- Low binding energy

- Extended density distribution

 \triangle

- 3.0 (f m) ⁶He \rightarrow Fusion probability can be enhanced due to the diffuseness! m rms 2.5 "Static effect" с 2.0 • = He o = Li(figure from A.Di Pietro) V ▲ = Be $\triangle = C$ Halo 5 10 D Α Different potential barrier height, Different curvature, ...
 - ⁶He+⁶⁴Zn & ⁴He+⁶⁴Zn measurement @ Louvain-la-Neuve
 - Sub-barrier fusion enhancement due to the diffuse ⁶He halo structure?
 - ⁶He fusion data stop at the Coulomb barrier More data required !

⁶He

Neutron halo

Borromean S_{2n}=0.972 MeV •

Characteristics of halo nuclei

- Extended density distribution
- Low binding energy

\rightarrow Break up channel affects on the fusion/reaction mechanism !

"Dynamic effect"

Navin *et al.*, PRC (2004) Chatterjee *et al.*, PRL (2008)

KPS2024SS (DCC)

Nuclear fusion of halo nucleus ⁶He

38

Figure from G.V. Rogachev

Target gas = Detection gas E.R. can be measured in the target

- Light projectile, heavy target
 - \rightarrow Evaporation Residue (E.R) has small V_{c.m}
 - \rightarrow E.R suck into target, cannot reach to detector
 - → Direct measurement of E.R. not available...
- Previous fusion measurements :

 (off-line) radioactivities, evaporated particles, γ-rays,...
 indirect method model dependent !

Fusion reaction induced by *p*-halo VS *n*-halo

Fusion of proton halo nuclei

Prediction : Larger sub-barrier fusion enhancement Valence proton – polarization – reducing the barrier

Observation :

Direct fusion measurement of ⁸B+⁴⁰Ar

→ No sub-barrier fusion enhancement (No strong influence by the breakup)

Fusion of neutron halo nuclei

No clear conclusion yet

Direct fusion measurement of ⁶He+⁴⁰Ar

 → ideal probe for clarifying the difference of the dynamic channel coupling effect ! (same target, same technique)

First direct fusion study of the ⁶He+⁴⁰Ar system

Figure from D. P. Scriven

• TexAT (active target TPC) + TexNeut (neutron detector) combination

Total fusion Micromegas – track of charged particles

Incomplete fusion, n-evaporation (ex. alpha transfer, ...)

KPS2024SS (DCC)

Experimental setup

- Measurement of energy deposition along the tracks in TPC by using Micromegas
- Direct identification of fusion events is available by analyzing the shape of the Bragg curves (large & strongly localized dE/dx !!!)
- Measurement of neutrons from the fusion evaporation & α-transfer channel by using TexNeut
- Fusion excitation function can be obtained with a single beam energy (thick target method).

Yield estimation and simulation

Simple FACE4 calculation : "Het" Al					
Z	Ν	Α	events	percent x	-section(mb)
20	25	45 Ca	17	1.7% <mark>1</mark> n	18.1
19	26	45 K	9	0.9% <mark>1</mark> p	9.58
20	24	44 Ca	730	73% 2n	777
19	25	44 K	94	9.4% 1p + ′	1n 100
20	23	43 Ca	99	9.9% 3n	105
19	24	43 K	2	0.2% 1p + 2	2n 2.13
18	24	42 Ar	2	0.2% alpha	2.13
18	23	41 Ar	47	(4.7%) 2p + 3	<mark>3n</mark> 50.1
тоти	AL.		1000	100	1064.96

In DACEA an Invitation + 61 In 140 Am

⁶ He + ⁴⁰ Ar measurement (V _c ~ 5.5 MeV)			⁴ He + ⁴⁰ Ar measurement ($V_c \sim 5.9$ MeV)		
E _{c.m.} (MeV)	σ _{TF} (mb)	Expected counts (/bin /day)	E _{c.m.} (MeV)	σ _{TF} (mb)	Expected counts (/bin /day)
3.478	0.27	3.7	3.636	0.23	4.1
4.348	10.9	151	4.545	5.6	96
5.217	108.8	1500	5.454	47.4	819
6.087	339	4674	6.364	173.1	2991
6.957	565	7799	7.273	349.3	6035

- Total fusion cross section already obtained by the FRESCO code
- Incomplete fusion cross section and neutron angular distribution calculation using CDCC is on-going.
- GEANT4 simulation for better detection efficiency is on-going.

Yield estimation based on the FRESCO

Direct measurement of ¹⁸Ne(α ,p)²¹Na reaction

¹⁸Ne(α,p)×30 Baseline 10 80 100 Mass Number, A 10° ¹⁸Ne(α,α)¹⁸Ne $^{26}\text{Si}(\alpha, \mathbf{p})^{29}\text{P}$ 150 σ (mb) 10 ${}^{17}F(\alpha, p){}^{20}Ne$ da/dΩ (mb/sr) 00 20 $^{24}Mg(\alpha, \gamma)^{28}Si$ ${}^{57}Cu(p, \gamma){}^{58}Zn$ 60 Zn(α , p) 63 Ga 10 ${}^{17}F(p, \gamma){}^{18}Ne$ 10 ${}^{40}Sc(p, \gamma){}^{41}Ti$ ${}^{48}Cr(p, \gamma){}^{49}Mn$ 10^{-} R. H. Cyburt et al., ApJ (2016) 2.0 2.5 3.0 $E_{\rm cm}$ (MeV)

Korea-China joint workshop for rare isotope physics

- one of the break-out candidates from the hot-CNO cycle, fueling the *rp*-process
- affects on the characteristics of X-ray burst (light curve, ash composition)
- Discrepancy among the measurements !
- Recent ¹⁸Ne+ α resonant scattering experimental result pointed out the importance of the direct S.M. Cha et al., measurement ! Front. in Phys. (2023)
- Then, ¹⁸Ne(*α,p*)²¹Na measurement using AToM-X !

13

14

15

16

17

18

19

Effect of gating grid TexAT v2, ${}^{14}O(\alpha,p){}^{17}F$

Micromegas (back : stiffener)

HV connection

2025/07/07

Korea-China joint workshop for rare isotope physics

- Test status
 - ✓ Pulser on mesh, checked wave forms at various pixels using GET + DAQ
 - \checkmark Checked analog signals on the mesh using a ²⁴¹Am α source and a cathode plate
 - \checkmark Obtained the track of α particles on the readout pad using GET + DAQ
 - ✓ Now trying to obtain the track using our newly-made field cage!

- Motivation
 - Total cross section of ¹²C*(p,p')¹²C*(HS) was measured up to 2.3 MeV above Hoyle state in previous work. Above region was predicted using Hauser-Feshbach calculation, however, was not sensitive to the resonance and failed to predict neutron upscattering result.
- Experiment setup
 - R3 beam line, proton beam with 8 18 MeV (1 MeV interval).
 - Active target TPC AToM-X with CO₂ gas target.
- Goal of the experiment
 - Measure total cross section of ${}^{12}C^*(p,p')3\alpha$, 0-12 MeV above Hoyle state threshold.
- 7 days of beam time is approved at JAEA tandem accelerator.

2025/07/07

Korea-China joint workshop for rare isotope physics

Field cage

Korea-China joint workshop for rare isotope physics

Major changes?

ibs CENS

- Octagonal shape → reduced the dead-layer effect of silicon detectors
- Double layer of aux. detectors → better angular coverage
- Extended FC \rightarrow longer track can be measured.
- External Micromegas as a chamber flange w/ new technique

Chamber and Data acquisition system

- Assembly type chamber (1/2"-thick aluminum)
- General Electronics for TPCs (GET) system based on ASIC
 - $\checkmark\,$ handling large number of channels w/ high data transfer rate
 - ✓ 5650 electronic channels in total (4600 from Micromegas & 1050 from aux. detectors)

E.C. Pollaco et al., NIMA (2018)

The second state of the second states

AsAd cover for the Micromegas

- Tracking charged particles (beam, recoils, ...)
- Drift electrons from the ionization are amplified b/w GEM & mesh & readout pad.
 - ✓ **Type-1 : Resistive** (for AsAd board protection)
 - ✓ **Type-2 : Resistive + Capacitive sharing** (for better position resolution)
- No ZAP board required (No bias on the readout pad)
- Micromegas as a chamber flange

ad. Beam

Resistive Micromegas for AToM-X

