

Development of Active Target TPC for COREA

2025. 07. 07 Haein Lee Korea University Hadron and Nuclear Physics Lab

1

Stellar Nucleosynthesis Reactions

The 4th Korea-China workshop

COREA experiment

Measurement of cross section of ${}^{12}C(\alpha, \gamma){}^{16}O$ near the Gamow window

COREA experiment

- + 500 keV/u 100 $p\mu A ~^{12}{\rm C}^{q+}$ ion beam
- active target TPC w/ $^{4}\mathrm{He}$ gas
- Measurement of p/q with the 3 T magnet
- + $LaBr_3$ detector array for the E1/E2 capture ratio measurement
- Coincidence measurement of recoil ^{16}O and γ

KBSI Busan Ion Beam Accelerator BIBA

S.H. Kim & J.K. Ahn, "Development of a GEM-based time projection chamber prototype for low-energy rare-isotope beam experiments", NIM A 962, (2020)

The 4th Korea-China workshop

4

Active Target TPC

- Operation at 0.05 atm 0.5 atm He : iC_4H_{10} = 9:1
- Wire-type Field cage
- Amplification w/ Triple GEM

Active Target TPC - Field Cage

- Double-sided field cages, spaced 2 cm apart, were employed to establish a uniform E-field.
- A dedicated frame and mass ensure consistent wiring and high reliability.

The 4th Korea-China workshop

Active Target TPC - Gating system

The 4th Korea-China workshop

Active Target TPC - Gating system

The 4th Korea-China workshop

Hadron and Nuclear Physics Lab

Ш

aL

KORE

Performance test of Active Target TPC

The 4th Korea-China workshop

Performance test of Active Target TPC

The 4th Korea-China workshop

Plan - Performance test at KIST Pelletron

The 4th Korea-China workshop

The 4th Korea-China workshop

Active Target TPC - Simulation study

The 4th Korea-China workshop

Yield Estimation

- Small detector prototype will prove the operation principle with high-intensity beams in 2025.
- The COREA experiment will run in these years from early 2026.

Thank you

Backup

• ${}^{12}C(\alpha, \gamma){}^{16}O$ Kinematics

Scattering angle and energy spread of recoil nuclei

The 4th Korea-China workshop

Ш α 2 Active Target TPC - Simulation study RFA guu 60 [<u>m</u> H.M. Yang, "Track Reconstruction in the Active Target Time Projection Chamber using Deep Learning Methods", Master's thesis [س 0.215 س ع Distribution of x-positions of electrons Gain of Triple GEM vs Applied Voltage 400 Collection Efficiency of Triple GEM vs Applied Voltage Entries 1.035689e+08 24000 0006 Gain %] χ^2 / ndf 7.858e+04 / 9997 300 22000 0.21 ŝ Const 2.222e+04 ± 2.833e+00 140 20000 Efficien Mean -0.000116 ± 0.000007 8000 200 Std 0.07198 ± 0.00001 18000 0.205 7000 Collection 100 16000 72 6000 14000 0.2 12000 70 5000 -100 10000 4000 0.195 68 -200 8000 3000 6000 -300 66 0.19 4000 2000 -400 2000 1000 0.185 260 270 280 290 300 310 320 330 340 Voltage [V] -0.2 -0.1 -0.05 15 0.2 x [mm] -0.15 0 0.05 0.1 0.15 260 270 280 290 300 310 320 330 340 -0.02 -0.01 0 0.01 0.02 Voltage [V] *x* [cm] Geant4 + Garfield++ Geant4 ⊀ [mm 700 [_____ ۲ [mm] 0.07 D_T [(cm] 600 40 40 0.06 500 0.05 0.1 atm 20 20 0.5 atm 400 0.04 1 atm 0 0.03 -20 -20 -20 0.02 200 0.01

-40 -40 200 400 2000 600 800 1000 1200 1400 1600 1800 100 E field [V/cm] $\frac{dC_i}{d\rho} = \frac{en_i}{2\pi\sigma^2} \exp(-\frac{(\rho - \rho_i)^2}{2\sigma^2}), \sigma = \sqrt{D_T^2 L_i + \sigma_{\text{GEM}}^2}$ -60 <u>-</u>60 -60 -40 -40 -20 -20 60 -40 -20 0 0 20 20 40 40 60 20 40 60 60 -60 0 Z [mm]mm] Z [mzhimm]

The 4th Korea-China workshop

18

Effective Charge States of Recoil ${}^{16}\text{O}^{q+}$

1.2 T magnet + Silicon detector

- Recoil nuclei quickly take up electrons in He gas to change their charge states
- A focal-plane spectrometer measures $Q_{\rm eff}$ of $^{12}{
 m C}^{q+}$ and $^{16}{
 m O}^{q+}$ in He gas at different energies and gas pressures

ш

REA

Hadron and Nuclear Physics Lab

The 4th Korea-China workshop