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🔹 Why Predict Nuclear Masses?

• Fundamental quantity for understanding nuclear structure

• Essential for astrophysical nucleosynthesis models

• Important for nuclear reactor simulations

🔹 Why is accuracy critical?

• r-process nucleosynthesis models require high-precision mass predictions.

• Nuclear binding energy influences reaction rates in stellar environments.

• Nuclear reactor stability relies on accurate fission product mass calculations.

Motivation



🔹 Limitations of Traditional Models

• Theoretical models (e.g., WS4, HFB-31) still have large uncertainties (~300 keV)

• Many models fail to capture local nuclear structure effects

• Need for a data-driven approach to improve precision

🔹 Why Machine Learning?

• ML can learn hidden patterns from experimental data

• Can combine global theoretical models with local corrections

• Previous ML studies improved predictions but generalization remains a challenge

• Our goal: Achieve higher accuracy (<200 keV) with better generalization
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Machine learning methods 
in nuclear mass predictions

Prof. Jian Li's talk in
“The 7th workshop on nuclear mass table 
with DRHBc theory”(@Gangneung, 2024)



Machine learning in nuclear mass predictions

Publications/citations per year Precision of prediction

✓ Although there are many studies using machine learning to predict nuclear masses, most of them achieve an accur

acy of only around 200 keV.

✓ To overcome this bottleneck, it is necessary to consider more physics, as demonstrated by some successful studies.

Prof. Jian Li's talk in
“The 7th workshop on nuclear mass table 
with DRHBc theory”(@Gangneung, 2024)



Machine Learning in Nuclear Mass Predictions



🔹 Challenges in ML-based Nuclear Mass Predictions

• Most models achieve only ~200 keV accuracy

• Overfitting issues: Good performance on training data, poor generalization to validation/test data

• Lack of physical interpretability: Many models treat nuclear masses as purely data-driven

🔹Ways to improve performance

• Combining ML with physics-based models (e.g., WS4, DRHBc)

• Feature engineering: Selecting physical parameters that improve predictions

• Advanced skills: Kernel method, Bayesian, Gradient Boosting, ……..

• Using deep learning (DNN & CNN) to capture both global and local nuclear effects



Supervised Machine Learning



http://solarisailab.com/archives/1785, 솔라리스의 인공지능 연구실

http://solarisailab.com/archives/1785


Why choose DNN?

• Captures complex, non-linear relationships in nuclear mass data

• More flexible than traditional models (e.g., WS4, HFB-31, DRHBc)

• Can integrate physics-based features for better interpretability

• Performs well even with moderate-sized datasets

• Balances accuracy and computational efficiency

• Can incorporate physical constraints into the learning process

• Achieves high precision (~70-180 keV) in nuclear mass predictions without requiring additional 

techniques such as kernel methods, boosting, etc.



🔹 Dataset & Feature Selection

•Training & test data from AME2020 (2,386 nuclei)

•75% training (1,789 nuclei) / 25% test (597 nuclei)

•Selected input features: Z, N, binding energy, separation energies (Sn, S2n), pairing effects

🔹 Deep Learning Architectures

•Deep Neural Networks (DNNs)

•Input features: 11I, 12I, 13I (selected physical quantities)

•Optimized structure for nuclear mass predictions

• [Convolutional Neural Networks (CNNs) → Not covered in this presentation.

•Input: 3-channel (Z, N, neighbor mass) → 4-channel (Z, N, neighbor mass, pairing effect)

•Captures local nuclear interactions better than DNN



🔹 Performance & Generalization Issues

• DNN: Best training accuracy = 63 keV, but validation = O(100~400) keV

• ( CNN: Higher accuracy (~70 keV), but poor generalization  Skipped this time ! )

• To improve generalization: Dropout, Batch Normalization, feature selection optimizations

✅ Dropout: A regularization technique that randomly drops a fraction of neurons during training to 
prevent overfitting and improve generalization.

✅ Batch Normalization: A method that normalizes activations across a mini-batch to stabilize 
training, accelerate convergence, and reduce internal covariate shift.

✅ Feature Selection Optimizations: The process of selecting the most relevant input variables to 
enhance model interpretability, reduce overfitting, and improve performance.



AME2020: the training and test sets by 0.75:0.25

The experimental mass excess values are taken 

from the Atomic Mass Evaluation 2020 

(AME2020) for nuclei with Z, N ≥ 8, covering 

2386 nuclei. The data is split into two subsets: 

75% (1789 nuclei) for training and 

25% (597 nuclei) for testing, with the same divis

ion used for all calculations. Additionally, the pe

rformance of the ML models is evaluated beyon

d these 

subsets. AME2020 includes new experimental in

formation for 71 nuclei compared to AME2016.



WS4 model



DRHBc Mass Table
➢ The even-Z part of the DRHBc mass table has been completed. 

▪ 2584 even-even nuclei and 2245 even-Z odd-N ones are predicted with 
8 ≤ Z ≤ 120. 

▪ Ground-state properties, including rms radii, quadrupole deformations, d
ensities, are produced. Zhang et al., (DRHBc Mass Table Collaboration) ADNDT 144, 101488 (2022)

Guo et al., (DRHBc Mass Table Collaboration) ADNDT 158, 101661 (2024)

From Dr. Myeong-Hwan Mun’s talk



🔹 Model Performance Comparison

•WS4 Model: Mean absolute error (MAE) ~300 keV

•DRHBc Model: MAE ~250 keV

•Our DNN Model:

• Best Training accuracy ~ 63 keV

• Validation accuracy O(100~400) keV

•Our CNN Model:

• Training accuracy ~ 70 keV

• Validation accuracy ~O(100 ~ 1000) keV

🔹 Key Observations

•ML models outperform WS4 & DRHBc but still face generalization issues

•CNN captures local correlations better but has higher validation error

•Further improvements needed for better extrapolation performance

Comparison with WS4, DRHBc, and ML Models



Results and Analysis
(Supervised learning for nuclear mass prediction)



Input parameters

Pairing effect:
𝛿 = (−1)𝑁+(−1)𝑍 /2

✅ Z – Proton number: Total number of protons in the nucleus.

✅ N – Neutron number: Total number of neutrons in the nucleus.

✅ A – Mass number: Total number of nucleons (A= Z + N).

✅ A^(2/3) – Mass number scaling factor: Represents the surface term in nuclear mass models, derived from the liquid-drop model.

✅ (N−Z)/A – Isospin asymmetry: A measure of the neutron-proton imbalance, which affects nuclear stability.

✅ ν_Z – Proton valence number: The number of protons outside the nearest closed shell.

✅ ν_N – Neutron valence number: The number of neutrons outside the nearest closed shell.

✅ P_F – Promiscuity factor: Defined as PF=(ν_Z * ν_N) / (ν_Z + ν_N), it quantifies the proton-neutron interactions.

✅ Z_eo – Proton even-odd indicator: 0 if Z is even, 1 if Z is odd.

✅ N_eo – Neutron even-odd indicator: 0 if N is even, 1 if N is odd.

✅ Z_shell – Proton shell model orbital: Represents the nuclear shell level of the last proton, categorized as 0, 1, 2, 3, or 4.

✅ N_shell – Neutron shell model orbital: Represents the nuclear shell level of the last neutron, categorized similarly to Z_shell.

✅ δ– Pairing term: Accounts for additional energy corrections due to nucleon pairing effects.



(Deep) Neural Nets

,𝛿

,𝛿

11 Inputs(≡ 11𝐼):

13 Inputs(≡ 13𝐼):

11 Inputs(≡ 𝐼11):

✅ ADAM (Adaptive Moment Estimation) Optimizer
•A widely used optimization algorithm that combines momentum and 
adaptive learning rates for efficient and stable training.
•Helps prevent vanishing gradients and accelerates convergence in 
deep learning models.

Predicted Nucleus Mass
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11 Inputs(≡ 11𝐼):

13 Inputs(≡ 13𝐼):

✅ Batch Size
•The number of training samples processed before updating the model’s 
parameters.
•A key hyperparameter that affects training speed, memory usage, and 
model generalization.

← RMS



MeV

← RMS ← RMS



WS4

DNN_M3 DNN_M4

MeV

MeV



(Deep) Neural Nets

Pairing effect:
𝛿 = (−1)𝑁+(−1)𝑍 /2
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11 Inputs(≡ 11𝐼):

13 Inputs(≡ 13𝐼):

13 Inputs(≡ 𝐼13):
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: Our Optimized DNN model

RMS → ※ This model achieves outstanding generalization ability !

Mass deviation: 241.4 keV 

Mass deviation: 23.8 keV 





Conclusion & Future Work(s)

✅ Key Achievements

• Developed an optimized Deep Neural Network (DNN) model for nuclear mass predictions.

• Achieved high accuracy (~70–180 keV), outperforming traditional models like WS4 and DRHBc.

• Improved generalization through feature selection, dropout, and batch normalization.

✅ Challenges & Limitations

• Generalization gap: Validation accuracy still varies (100–400 keV).

• Physical interpretability: Need better integration of nuclear physics constraints.

• Extrapolation issues: Performance drops for neutron-rich nuclei.



✅ Future Improvements

• Enhancing generalization: Data augmentation & better feature engineering.

• Exploring advanced ML architectures: Transformers, Bayesian models.

• Physics-informed ML: Combining deep learning with nuclear theory constraints.

• Towards high-precision mass predictions: Reducing RMS error below 100 keV.

✅ Long-Term Goals

• Develop a world-class ML-based nuclear mass model.

• Improve r-process nucleosynthesis predictions.

• Expand ML applications in nuclear astrophysics and fundamental physics.

Thank you for your attention!


