Hadronic Physics through J-PARC

Shinya SAWADA

High Energy Accelerator Research Organization (KEK)

The 3rd Japan-Korea Workshop on Hadrons and Nuclei at Korea University, Seoul, Mar 2-3

Contents

- J-PARC: Past and Present
 - Facility
 - Strangeness nuclear physics and hadronic physics
- EIC
 - Yellow Paper
- Hadron Extension
- Hadronic Physics for Future J-PARC
- Physics and Facility
- Summary

J-PARC

Past and Present

大ハドロン計画 Great Hadron Project →大型ハドロン計画 Japan Hadron Facility (JHF)

大ハドロン計画 Great Hadron Project (1985年) 核物理コミュニティが提案 Proposed by Nuclear Physics Community of Japan

大強度陽子 High Intensity Protons 3 GeV (100 mA) + 30 GeV (30 mA) 重イオン Heavy Ions 1 A GeV + 10 A GeV

大ハドロン計画 Great Hadron Project →大型ハドロン計画 Japan Hadron Facility (JHF)

大型ハドロン計画#1(JHP)(1987) Japan Hadron Project 東大原子核研究所による提案 Proposed by Institute for Nuclear Studies (INS), University of Tokyo KEKの敷地を仮定 Assumed KEK's campus

大強度1 GeV 陽子ビーム High Intensity 1-GeV proton beam (>200 µA)

Korea University

大ハドロン計画 Great Hadron Project →大型ハドロン計画 Japan Hadron Facility (JHF)

1997年5月14日

高エネルギー加速器研究機構

大型ハドロン計画推進室

大型ハドロン計画#2(JHF) (1997) Japan Hadron Facility 1997年4月に東大核研と合併した新KEK(高エネルギー 加速器研究機構)から提案 Proposed by KEK when the new KEK was established by merging the old KEK, INS (U. Tokyo), and Meson Physics Lab (U. Tokyo)

大強度陽子ビーム High Intensity Proton Beams $3 \text{ GeV} (200 \ \mu\text{A}) + 50 \text{ GeV} (10 \ \mu\text{A})$ + (重イオン Heavy Ions)

K-arena, M-arena, N-Arena, E-arena ニュートリノは既存ビームラインを利用 Neutrino by existing neutrino beamline Korea University

March 3, 2025

JHF98 International Workshop on JHF Science

High Energy Accelerator Research Organization

JHF98 KEK, Tsukuba, Japan, March 37, 1998 Korea University

JHF98 International Workshop on JHF Science

High Energy Accelerator Research Organization

March 3, 2025

Contents
Preface
Plenary Session
JHF sciences (Part 1)
Japan Hadron Facility (JHF) project at KEK I – S. Nagamiya (KEK)
Overview of neutrino oscillations S. Wojcicki (Stanford)
Kaon and muon physics W. Marciano (BNL)
Future prospects in nuclear physics and the Japan Hadron Facility \cdots I = 4 . V. Metag (GSI)
The QCD nuclear physics I = 6 . M. Oka (TIT)
JHF sciences (Part 2)
The accelerator complex of the Japan Hadron Facility (JHF)
Materials science with neutrons W.I.F. David (RAL)
Biological sciences with neutron beams I - 95 J. Trewhella (LANL)
Muon science
Nuclear astrophysics with radioactive ion beams \dots I-107 G.J. Mathews (Notre Dame)
Spin polarized radioactive beams for condensed matter physics

JHF98 International Workshop on JHF Science

Joint session between the OECD meeting and the JHF workshop about the review of world's hadron facilities

The Paul Scherrer Institut H.K. Walter (PSI)

Summaries for parallel sessions

K-arena working groups

- (1-a,b) Particle physics with kaons, muons and neutrinos Summary of JHF K-arena working groups 1a/1b Y. Kuno (KEK) and L. Littenberg (BNL)

-I - vii -

- (1-e) Hadron spectroscopy and physics with antiprotons and antinuclei Summary talk I-194 T. Bressani (INFN)

N-arena working groups

- (2-a) Parallel session (2-a) 'Solid target technology' Summary T.A. Broome (RAL)

- M-arena working group The JHF - a place for µSR-spectroscopy in the next century A. Schenck (ETH) I-213

E-arena working groups (4-0,a,d,e) E arena summary

Particle physics with K, μ , ν (Kuno、Littenberg)

Strangeness nuclear physics (Bassalleck)

Physics with primary beam (Chiba)

Hadron spectroscopy and physics with antiprotons and antinucleus (Bressani)

JHF98: K arena International Workshop on JHF Science

Parallel Sessions

K-Arena

1-a;	Kaon	and	muon	rare	decays

- 1-b; Neutrino physics
- 1-c; 1-d; Strangeness nuclear physics
- 1-d; Physics with primary beams
 1-e; Hadron spectroscopy and physics with anti-proton and anti-nuclei

(1-a,b,c,d,e) Joint session

Basic design of beamlines and experimental areas of the JHF 50GeV-P K.H. Tanaka (KEK)	sII –	1
--	-------	---

(1-a,b) Joint session "Beams in future"

Design and simulation of a new high intensity pulsed muon beam
Simulation of solenoid capture for high intensity muon beam at RIKEN/RAL and KEK
Ionization cooling research and development program for a high luminosity muon collider $\dots II = 1.6$ S. Geer (FNAL)

(1-a) "Rare Kaon decays (I)"

Status and results of BNL E871 - Rare decays of neutral kaons
Status of the KTeV experiment at fermilab
Hyperon particle physics at JHF R.E. Mischke (LANL) II - 29
DC and RF separated kaon beamsII - 33 J. Doornbos (TRIUMF)
(1-a) "Rare Kaon decays (II)"
$\begin{array}{l} \mathbf{K}^{\star} \rightarrow \pi^{\star} \nu \nu \\ \mathbf{K}^{\star} \rightarrow \pi^{\star} \nu \nu \text{ at JHF } \\ T. Shinkawa (KEK) \end{array} \boxed{II - 35}$
Measurement of T-violation in K* decays at JHF ······II - 39 Y.G. Kudenko (INR)
$\mathbf{K}_{L} \rightarrow \pi^{0} \boldsymbol{\nu} \boldsymbol{\nu}$ A program to measure the direct CP violating decay $\mathbf{K}_{L} \rightarrow \pi^{0} \boldsymbol{\nu} \boldsymbol{\nu}$ and other rare decays $\cdots \cdots \cdots$
Experimental study on the $K^{0}_{L} \rightarrow \pi^{0}_{VV}$ decay at JHF $\dots I = 48$ <i>T. Inagaki (KEK)</i>
(1-a) "Muon decays and conversions"
Lepton-flavor violation in supersymmetric models
$ \underset{R.E.MisBlace(LANL)}{\mu \rightarrow e\gamma} e\gamma \qquad $

$A \mu \rightarrow e+\gamma$ experiment at PSI? H.K. Walter (PSI)	Π – 65
$\mu \rightarrow e$ conversion circus The muon-electron conversion experime H.K. Walter (PSI)	nt at PSI
The MECO experiment at BNL - search W. Molzon (UC Irvine)	for $\mu : N \rightarrow e N$ with sensitivity below $10^{-16} \dots \Pi = 73$
Results from recent searches for muc perspectives K. Jungmann (Heidelberg)	nium-antimuonium conversion and future $\cdots I = 77$
High resolution spectroscopy of muonium K. Jungmann (Heidelberg)	II - 81
(1-b) "Current status of neutrino experimen	<u>ts''</u>
Atmospheric neutrino results from Super-K T. Kajita (ICRR)	amiokande
CHORUS and DONUT O. Sato (Nagoya)	Ш — 89
(1-b) "On-going and future projects"	
Initial results from the CHOOZ experiment M. Grassi (Pisa)	Ш — 93
Long baseline neutrino oscillation experime S. Mine (KEK)	nt, using KEK-PS and Super-Kamiokande $\cdots\cdots\cdots$ II $-$ 9 7
Emulsion long baseline experiment M. Komatsu (Nagoya)	ш—101
(1-b) "Discussion for future of neutrino expe	riment"
A pilot experiment with reactor neutrinos in H.T. Wong (Taipei) and J. Li (IHEP)	Taiwan
BooNe, the LSND effect, and opportunities R. Stenfanski (FNAL)	for short baseline neutrino facilities \cdots II-109
Neutrino projects at JHF 3-GeV booster ··· S. Sakamoto (KEK)	
(1-c,d,e) Joint session	
Overview of the strangeness nuclear physic: B.F. Gibson (LANL)	з <u>п</u> —117
Status and perspectives of the search for nor M. Faessler (Munich)	$1-qq$ mesons: Scaler and exotic mesons $\dots II-121$
What can we do on gravity with antihydroge Y. Fujii (Nihon Fukushi)	m? ······Ⅲ—125
(1-c) "Strangeness general"	
An effective theory of QCD for hyperons an R.P. Springer (Duke)	d hypernuclei
Flagship experiments in strangeness nuclear B. Bassalleck (New Mexico)	physics
(1-c) "S = -1"	Korea University

(1-c) "S = -2"
ΛΛ and Ξ Hypernuclei
Low count rate S=-2 experiments
(1-c) "Facility"
A perspective from the AGS III-148 P.H. Pile (BNL)
Magnetic spectrometer for strangeness S=-2 physics
High-resolution pion beam line at the Japan Hadron Facility
(1-d) "Physics with primary beams"
Large-x resummation in DIS
Spin physics with 50 GeV primary beams at JHF ······II-170 T.A. Shibata (TIT)
Spin physics at JHF (Lower Energies) III-174 T. Noro (RCNP)
Lepton pair production at JHF
Multi-fragmentation II-182 T. Murakami (Kyoto)
Investigation of polarization phenomena and nuclear reactions with the Medium Resolution
(1-e) "Experiments with antiprotons above 2 GeV/c"
Current status and future prospects for exotic mesons

Hyperon-proton scattering experiments ...

M. Jeiri (KEK)

o.o. chung (birb)	
Physics with antiprotons, $\sqrt{s} \ge 2.3 \text{ GeV}$ <i>M. Faessler (Munich)</i>	
Physics with antineutrons	II-198
Baryonic systems with charm and bottom in the bo V.B. Kopeliovich (INR)	and state soliton model \dots II-202
(1-e) "Experiments with low energy antiprotons"	
Atomic and nuclear physics possibilities at JHF usi J. Eades (CERN)	ng antiprotons ······II-207
First experiments with antideuterons at JHF F. Iazzi (Torino)	

AA/AC/AD and future antiproton complex at KEK S. Maury (CERN)	
--	--

·II-137

KEK-JAERI Joint Project (1998~)

NP01

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

Dec. 10 (Mon)

- 8:00 9:00 = Registration =
- 9:00 9:10 H. Sugawara(KEK)*, Welcome Address
- 9:10 9:50 S. Nagamiya(KEK), Present status of the Joint Project
- 9:50 10:10 Y. Yamazaki(KEK), Accelerator Complex Design and Construction
- 10:10 10:30 = Coffee Break =
- 10:30 11:10 Y. Mori(KEK), 50-GeV Proton Synchrotron
- 11:10 11:50 T. Nagae(KEK), Strangeness Nuclear Physics experiments at 50-GeV PS
- 1:20 2:00 H.C. Bhang(Seoul)*, Study of the weak decay of hypernuclei with 50-GeV High Intensity Proton Accelerator
- 2:00 2:40 H. Spinka(ANL), Hadron Physics experiments at 50-GeV PS*
- 2:40 3:20 T. Numao(TRIUMF), Kaon rare decay experiments at 50-GeV PS
- 3:20 4:00 N. Sasao(Kyoto), Physics with high intensity muon beams
- 4:00 4:20 = Coffee Break =
- 4:20 5:00 T. Nakaya(Kyoto), Neutrino experiment at JHF
- 5:00 5:40 K. McFarland(Rochester), Neutrino oscillation experiments*

5:40 - 6:20 E. Widmann(Tokyo), Atomic Physics with Ultra-Slow Antiprotons

6:45 - 8:30 = Reception Party =

Dec.11 (Tue)

9:00 - 9:20 J. Imazato(KEK), Activities of Nuclear/Particle Physics Group 9:20 - 10:00 K. Tanaka(KEK), Present design of beam lines

10:00 - Parallel Working Session

- Dec.12 (Wed) Working Group Reports
- 9:00 9:30 WG#1: M. leiri(KEK)/H.C. Bhang(Seoul)
- 9:30 10:00 WG#2: S. Sawada(KEK)/H. Spinka(ANL)/T. Nakano(RCNP)
- 10:00 10:30 = Coffee Break =
- 10:30 11:00 WG#3: Y. Kudenko(INR)/K.Yoshimura(KEK)
- 11:00 11:30 WG#4: A. Konaka(TRIUMF)/T. Kobayashi(KEK)

1:00 - 2:30 Discussions

*Parallel Working Session:

- WG#1: Strangeness Nuclear Physics experiments,
- WG#2: Nuclear/Hadron Physics experiments,
- WG#3: Kaon/Muon Rare Decay experiments,
- WG#4: Neutrino experiments.

The coordinators of each session are, WG#1: M. leiri(KEK)/H.C. Bhang(Seoul),

WG#1: M. Tem(RER)/H.C. Dhang(Seoul), WG#2: S. Sawada(KEK)/H. Spinka(ANL)/T. Nakano(RCNP), WG#3: Y. Kudenko(INR)/K.Yoshimura(KEK), WG#4: A. Konaka(TRIUMF)/T. Kobayashi(KEK).

March 3, 2025

NP01: Hadron Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

March 3, 2025

Dec 12, 2001

NP01: Hadron Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

Subjects Discussed (cntd.)

- Multifragmentation (Tanaka)
- · Research using HI beams
 - Unique tool to study "relativistic hypernuclei" (Sakaguchi)
 - Important and unique tool to study nuclear matter with high baryon density (Sugitate)
 - Experimental setup for flow measurement was proposed. (Esumi)
- Research using polarized proton beams
 - Spin physics
 - Parity violation experiments (Arvieux)
 - Prof. <u>Hatanaka</u> suggested polarized beam might be able to be accelerated with "tune jump" method.
- Research using ultra-slow antiprotons (Widmann)
 - Not only atomic physics, but also fundamental physics.
 - They will transfer the antiproton decelerator to JHF after CERN experiments.

#2 Summary/S. Sawada@NP01

4

Strategy

- First of all, we should brush up the physics cases.
 - Uniqueness, relationship with experiments at other facilities, ...
 - Will make documentations in the coming year.
- For experiments using high momentum p, p-bar, pi, K, ...
 - Will start design work and R&D for the "multipurpose beam line". The key is the quality of the beam. Beam channel expert (Tanaka) think we will be able to have a design of a good quality beam line in half a year.
 - Consider possibility of the RF separators.
 - Detector R&D will be started, including hadron blind detectors etc. by the subgroups. This is related with the ongoing research programs (RHIC, LHC, etc.).
- · For HI experiments:
 - We should not only brush up the physics cases, but also consider various realistic possibilities of HI acceleration.
 - Will ask project headquarters to consider construction of the HI injectors with these studies.

Dec 12, 2001

#2 Summary/S. Sawada@NP01

5

NP01: Hadron Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

Multipurpose Beam Line

- To accommodate various needs for beams from hadron physics experiments;
 - 50-GeV protons with ~10¹² pps <= Str. Fn.
 - 50-GeV protons with ~10⁹ pps <= Vec. Meson
 - Very small beam size (~1mm2), stable, very small beam halo
 - 5~50-GeV variable energy protons with ~10⁹ pps <= Multifragmentation
 - 5~30-GeV variable energy secondary particles with ~10⁹ pps
 <= Multifragmentation & others
 - HI beams with 10¹⁰ ions per second

- · For polarized proton experiments:
 - Question on the needs of pol. proton beams at JHF is open, when we have pol. p beams at AGS/RHIC-Spin.
 - We should ask wide range of the physics communities.

Dec 12, 2001

#2 Summary/S. Sawada@NP01

Dec 12, 2001

March 3, 2025

NP01: Strangeness Nuclear Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

Strangeness Nuclear Physics experiments at 50-GeV PS

Tomofumi Nagae KEK

- LOI for the Experiments on Strangeness Nuclear Physics at the 50-GeV Proton Synchrotron, July, 2000.
 - K. Imai, T. Nagae, M. leiri, H. Noumi, T. Fukuda, H. Outa, K. Nakazawa,
 - K. Yamamoto, T. Yoshida, O. Hashimoto,
 - H. Tamura, T. Takahashi, Y. Fujii,
 - T. Kishimoto, K. Tanida, B. Bassalleck
 - <u>http://www-jhf.kek.jp/JHF_WWW/LOI/50GeVNP-LOI-v1.0.pdf</u> or visit http://jkj.tokai.jaeri.go.jp/NuclPart/Science.html

NP01: Strangeness Nuclear Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

- Introduction
- Spectroscopic Study of S=-2 Systems
- Hyperon Proton Scattering
- Hypernuclear γ-ray spectroscopy
- High-Resolution Reaction Spectroscop of S=-1 Hypernuclei
- Study of Dense Nuclear Matter with Strangeness

NP01: Strangeness Nuclear Physics

International Workshop on Nuclear and Particle Physics at 50-GeV, 10-12, Dec. 2001

WG#1 Strangeness Nuclear Physics experiments by M. IEIRI & 25 participants

Letter of Intent (July	12, 2000) [http://jkj.tokai.jaeri.go.jp/NuclPart/Science.html]
 T. Nagae 	"Strangeness Nuclear Physics experiments at 50-GeV PS"
 T. Fukuda 	"Double-Lambda at BNL"
 K. Nakazawa 	"Next step on the coming hybrid experiment(AGS-E964) at JHF"
• M. leiri	"Hyperon-proton scattering experiment"
• K. Tanida	"Gamma-ray spectroscopy of hypernuclei"
• Y. Akaishi	"Characteristic features of Strangeness Nuclear Systems"
 T. Yamazaki 	"Kbar-nucleus bound state spectroscopy"
• M. Iwasaki	"Experimental search for Kbar-nucleus bound state"
• V. Kopeliovich	"Multibaryons with Strangeness and Charm"
• E. Hiyama	"Comments from the theoretical side"
• A. Sakaguchi	"Feasibility of Production and Detection of Relativistic Hypernuclei
• H. Noumi	"Secondary beam lines"
• H. Hotchi	"Possibility of moving the BNL-AGS D6 line to JHF"
•Discussion	

Subjects		Specials	Beamtime	estimated counts	output	
			(days)			
Spectroscopic Study of S=-2 Systems						
Spectroscopy of Ξ Hypernuclei		upgraded SKS				
production of E Hypernuclei	K1.8		20	~ 120 events/MeV/(²⁰⁸ Pb)	E-N potential	
production of AA Hypernuclei	K1.8		100	~ 60 events/peak	excited states of $\Lambda\Lambda$ hypernuclei	
 ΛΛ Hypernuclei by Sequential Pionic Decays 	K1.8	CDS	not yet	-	g.s. mass of $\Lambda\Lambda$ hypernuclei	
Double-Strangeness Nuclei by an Emulsion-Counter	K1.8	Emulsion	36	~ 10000 X stopping	B.E.	
Hyperon Proton Scattering		Liq. H2 & CDS				
• Ξр→Ξр, ЛЛ	K1.8		100	2300, 550	direct input to BB strong interaction Models	
Asymmetry	K1.8		not yet	-	direct input to BB strong interaction Models	
Hypernuclear γ-ray spectroscopy						
 Spectroscopy of Light and Heavy Hypernuclei 		Hyperball			∧N effective two-body interaction	
¹² _A C	K1.1		5	single ~10000, γγ ~100		
¹² ^A B	K1.1		30	single ~10000, γγ ~100	(CSB)	
²⁰⁰ [,] Pb	K1.8		5	~1000 /transitions		
${\mbox{ \ \ }}$ "Impurity N.P." - Nuclear Structure Change Induced by Λ						
⁷ _≜ He	K1.1		10	330 E2 γ-rays	Λ in neutron-skin	
²⁰ "Ne	K1.1		a few	1000-10000 ?	spectroscpoy & effective ΛN spin-dependent int.	
 B(M1) : g-Factor of Λ in Nuclear Matter; ¹²_ΛC 	K1.1		17	~ 15000	size of baryon in nuclear matter	
 Spectroscopy of ∆∆ Hypernuclei 						
4 ₀₀ H	K1.8		10	~ 3100, γγ ~110	$\Lambda\Lambda$ spin-orbit force	
¹³ "B	K1.8		10	~ 100	ΛΛ spin-orbit force	
 Spectroscopy of neutron-rich Hypernuclei 	?		not yet			
• ፰-atom X-ray	K1.8				⊡ nucleus interaction	
High Resolution Reaction Spectroscopy of S=-1Hypernuclei		HRBL				
• Fine structure of $\Lambda\text{-single particle potential; ^{90}{}_{\text{A}}\!Zr$	K1.8		10	~ 1700 for g.s.	further decomposition of spin-orbit splitting	
Precision spectroscopy of light hypernuclei; ¹² C	K1.8		10	~ 1000	check of inter-shell mixed configuration	
- Spectroscopy of neutron-halo Λ hypernuclei; ${}^{12}{}_{\scriptscriptstyle \Lambda} \text{Be}$	K1.8		10	~ 200	Λ-neutron interaction	
• Spectroscopy of Σ hypernuclei; ${}^{208}_{2}$ Hg	K1.8		10	~ 100		
Kbar-nucleus bound state spectroscopy	K1.1				hadron dynamics in cold dense matter	
Hypernuclei production with Heavy Ion					Life time, decay, size	

Korea University

NP02

2nd International Workshop on Nuclear and Particle Physics at 50-GeV, 27-29, Sept. 2002

Summary of Nuclear/Hadron Physics Working Group

Hideto En'yo (RIKEN) Shin'ya Sawada (KEK)

				beam	200000 - 26 - 20 - 20000 - 20	0	Apparatus	Comment
				low intensity	high intensity	future		
		Keynote talk	H. Spinka					
		Possibility of HI and pol-p acceleration	Y. Mori					
		Towards the construction of multi-purpose beam line	K.H. Tanaka				·	
		Future of structure functions of the nucleon and nuclei	TA. Shibata		primary p	pol. p		
		Sturucture function and related physics	N. Saito		primary p	pol, p		
		Muon pair measurements and physics	S. Sawada		primary p			
	Sturucture							nixel
	function	The vertex spectrometer of the NA60 experiment	K Banicz	orimany o		н	dimuon spectrometer	telescor
	Taniocion		N. Danioz	primary p			difficient opcochomotor	1010300
		Vector Meson Measurement at JHE to Evolore the Chiral						
		Symmetry of OCD	S. Vokkaichi	nrimary n				
		Dranged apactrometer	K Ozavia	secondaries			dielectron spectrometer	HBD
		Comments and discussion	H. Uzawa	actionation of a			energial hall	100
		Comments and discussion	C. Faunai	primary p	1.1		crystal ball	
		Experiments with HL beams*	5. Esumi			н	multipurpose	<u> </u>
		The sector sector of the NACO sector in set	V. Davis				dimuon spectrometer +	
I		The vertex spectrometer of the NA60 experiment	K. Banicz			н	pixel tracking	
		Muon pair measurements and physics	S. Sawada		primary p		dimuon spectrometer	
		Multifragmentation in GeV-energy domain – now and	and the second second	primary p,		1.12		
ビーム		future	T. Murakami	secondaries		H	Bragg curve counter	
927		Overview of Lattice QCD Calculations – Studies of New					and the second	
1	Nuclear	Aspects of QCD at JHF -	A. Nakamura					
	matter	Diphoton emission from hot and dense matter near the						
	physics	critical end point	K. Fukushima					
			Martin Martin					6.0
1		Very High P_t proton-proton elastic scattering at U-70	A.D. Krish/K.					pol. p
	Nuclear force	and possibly JHF	Yonehara	primary p	primary p			target
							charged particle	
		Hadron physics with monochromatic KL beam: Z+ search	T. Nakano	1GeV/c pi			spectrometer + neutron	
		Has the PROMICE/WASA detector at CELSIUS seen the						
	Meson	first true dibaryon?	T.J. Goldman					
	hadron		V. Obraztsov		200 - Day - 200			RF
	spectroscopy	Separated K+ beam line and hadron spectroscopy	T. Teuru		secondary K		beam line spectrometer	separate

Summary of physics topics discussed at nuclear/hadron physics session

Concept for Multipurpose Beamline K.H.Tanaka

11/1

	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
(T1889 T227/97
<i>a</i> .	遊入課 提補室 電気ヤード 電気室 電源室

Sep 29, 2002

17

Nucl/hadron Summary @NP02

4

テストピームライン室(二期)

March 3, 2025

Sep 29, 2002

Nucl/hadron Summary @NP02

3

Korea University

SX Beam Power History

max beam power: **82 kW**

K beam intensity

KEK-PS: K purity was for example ~25%.

KEK-PS Beamline	K / spill (4s)	Protons / spill (4s)	Note
K2	2x104 K-	2x10 ¹²	1.67GeV/c, E522
	1x10 ⁴ K ⁻	3x10 ¹²	1.0GeV/c, E549
K5	1.9x10 ⁵ K ⁺	2.2x10 ¹²	0.66GeV/c, E470
	6x10 ³ K ⁻	1.5x10 ¹²	stopped, E549
K6	1.3x10 ⁴ K ⁺	0.87x10 ¹²	1.2GeV/c, E559

J-PARC K1.8 Beamline (with 51kW primary proton beam):

Beamline	K / spill (5.2s)	Protons / spill (5.2s)	Note
K1.8	3.3x10 ⁵ K ⁻	5.4x10 ¹³	1.8GeV/c, E07 purity=82.5%
	7.0x10 ⁵ K ⁻	5.4x10 ¹³	1.8GeV/c, purity=44%

March 3, 2025

Korea University

Achievements in research at the Hadron Experimental Facility

- Strangeness Nuclear Physics
 - Though programs were shown somehow even almost around the beginning of J-PARC.
 - It is now 20 years then, many of them have been realized, or on the way to realization.
- Hadronic Physics
 - Various ideas were proposed around the beginning of J-PARC.
 - One of the first programs, the phi experiment (E16), is now being conducted, after 20 years.
 - "multipurpose beamline" (~10 oku-Yen) was not included in the first phase budget of J-PARC, but somehow realized. But this kind of "fortune" would not be a realistic currently.
 - There may be various possibilities of hadronic physics experiments, and we should make up an inclusive plan where many hadronic physicists can collaborate.

Experiment at Fermilab: SeaQuest

• A proposal to J-PARC, P05, has been realized at Fermilab with the 120-GeV Main Injector as "SeaQuest"

Experiment at Fermilab: SeaQuest

Article	Nature 590, 561 (2021			
Theasymmetr	y of antimatter in the proton			
https://doi.org/10.1038/s41586-021-03282-z	J. Dove ¹ , B. Kerns ¹ , R. E. McClellan ¹¹⁰ , S. Miyasaka ² , D. H. Morton ³ , K. Nagai ²⁴ , S. Prasad ¹ ,			
Received: 2 June 2020	r. Santtr, M. B. C. Scott, A. S. Tadepatter, C. A. Aldatar, J. Arrington, G. Ayusor, J. C. Ayusor, C. Ayusor, C. L. Barker ⁸ , C. N. Brown ⁹ , W. C. Chang ⁴ , A. Chen ^{1,34} , D. C. Christian ¹⁰ , B. P. Dannowitz ¹ ,			
Accepted: 15 December 2020	M. Daugherity ⁸ , M. Diefenthaler ^{1,18} , L. El Fassi ^{5,11} , D. F. Geesaman ^{7,21} , R. Gilman ⁵ , Y. Goto ¹² ,			
Published online: 24 February 2021	L. Guo ^{4,} , R. Guo ^{4,-} , I. J. Hague ⁴ , R. J. Holt ^{4,} , D. Isennowe ⁴ , E. R. Kinney ^{4,-} , N. Kitts ⁴ , A. Klein ⁴ , D. W. Kleinian ⁶ , Y. Kudo ¹⁵ , C. Leund ¹ , PJ. Lin ¹⁴ , K. Liu ⁶ , M. X. Liu ⁶ , W. Lorenzon ³ , N. C. R. Makins ¹ ,			
Check for updates	M. Mesquita de Medeiros ⁷ , P. L. McGaughey ⁶ , Y. Miyachi ¹⁵ , I. Mooney ³²⁴ , K. Nakahara ^{16,25} , K. Nakano ²¹² , S. Nara ¹⁵ , JC. Peng ¹ , A. J. Puckett ⁶²⁶ , B. J. Ramson ²³⁷ , P. E. Reimer ⁷ , J. G. Rubin ²⁷ , S. Sawada ⁷⁷ , T. Sawada ²²⁸ , TA. Shibata ²²⁹ , D. Su ⁴ , M. Teo ¹³⁰ , B. G. Tice ⁷ , B. S. Tourul ¹⁶ , S. Liemurs ⁵³ , B. Muchara ¹⁵ , A. D. Muchara ¹⁵ , J. M. Ho ¹³⁰ , J. G. Tice ⁷ ,			

PHYSICAL REVIEW C 108, 035202 (2023)

Measurement of flavor asymmetry of the light-quark sea in the proton with Drell-Yan dimuon production in p + p and p + d collisions at 120 GeV

J. Dove,¹ B. Kerns,¹ C. Leung,¹ R. E. McClellan,^{1,*} S. Miyasaka,² D. H. Morton,³ K. Nagai,^{2,4,5} S. Prasad,^{1,6} F. Sanftl,²
M. B. C. Scott,^{3,6} A. S. Tadepalli,^{7,†} C. A. Aidala,^{3,5} J. Arrington,^{6,‡} C. Ayuso,³ C. T. Barker,⁸ C. N. Brown,⁹ T. H. Chang,⁴
W. C. Chang,⁶ A. Chen,^{1,4,3} D. C. Christian,⁹ B. P. Dannowitz,¹ M. Daugherity,⁸ M. Diefenthaler,¹ L. El Fassi,^{10,7}
D. F. Geesaman,⁶ R. Gilman,⁷ Y. Goto,¹¹ L. Guo,^{5,§} R. Guo,¹² T. J. Hague,^{8,‡} R. J. Holt,^{6,||} D. Isenhower,⁸ E. R. Kinney,¹³
N. D. Kitts,⁸ A. Klein,⁵ D. W. Kleinjan,⁵ Y. Kudo,¹⁴ P.J. Lin,^{13,4} K. Liu,⁵ M. X. Liu,⁵ W. Lorenzon,³ N. C. R. Makins,¹
M. Mesquita de Medeiros,⁶ P. L. McGaughey,⁵ Y. Miyachi,¹⁴ I. Mooney,³ K. Nakahara,^{15,**} K. Nakano,^{16,2,11} S. Nara,¹⁴
J. C. Peng,¹ A. J. Puckett,^{5,††} B. J. Ramson,^{3,9} P. E. Reimer,⁶ J. G. Rubin,^{3,6} S. Sawada,^{0,17} T. Sawada,^{3,‡‡}
T.-A. Shibata,^{2,,11,§§} S. H. Shiu,⁴ D. Su,⁴ M. Teo,¹ B. G Tice,⁶ R. S. Towell,[§] S. Uemura,^{8,||||} T. S. Watson,⁸
S. G. Wang,^{4,12,¶} A. B. Wickes,⁵ J. Wu,⁹ Z. Xi,[§] and Z. Ye^{6,a}

- The ratio of the Drell-Yan cross sections (p+d)/2(p+p) at large x (0.13 < x < 0.45) was measured using the 120-GeV proton beam120 GeV and then the ratio of sea quarks $\overline{d}(x)/\overline{u}(x)$ was deduced.
- A previous experiment suggested this ratio might be smaller than 1, but the present experiment proved that the ratio is larger than 1 even at larger x values. This result is consistent with theories including the meson cloud model.

EIC

- Physics of EIC
 - How nucleon spin emerged?
 - How nucleon mass emerged?
 - What emergent characteristics the high-density gluon system has?
- Status of the project
 - December, 2019: CD-0 (approval of scientific significance)
 - January, 2020: Brookhaven National Lab was selected as the site
 - 2025?: CD-3 (approval of beginning of construction), completion of construction and start of experiments are expected in 2032
 - Highly polarized electron (~70%) and proton (~70%) beams
 - Ion beams from electrons to heavy nuclei such as gold, lead, or uranium
 - Variable e+p center-of-mass energies from 20-100 GeV, upgradable to 140 GeV
 - High collision electron-nucleon luminosity 10³³-10³⁴ cm⁻²s⁻¹

As it takes some time to realize EIC, R&D and education at currently running facilities are important. Collaboration between EIC and J-PARC is essential.

March 3, 2025

Korea University

Hadron Extension

Many slides from Sakuma

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- K1.1

Systematic ΛN scattering measurement

- intense polarized Λ beam

Investigate diquarks in baryons

High-resolution charm baryon spectroscopy

• intense high-momentum π beam

K10

High-resolution multi-strange baryon spectroscopy

intense high-momentum separated K beam

Search for new physics beyond the SM

ig| Most sensitive $K^0_L o \pi^0
u \overline{
u}$ measurement

Korea University

March 3, 2025

Expanded Research

31

Programs

at the Extended Facility

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- Systematic ΛN scattering measurement
 - intense polarized Λ beam

nvestigate diquarks in baryons

high-p

High-resolution charm baryon spectroscopy
intense high-momentum π beam

K10

- ligh-resolution multi-strange baryon pectroscopy
- intense high-momentum separated K beam

Search for new physics beyond the SM

12 Highest-sensitive $K_L^0 \rightarrow \pi^0 \nu \overline{\nu}$ measurement March 3, 2025 March 3, 2025 Korea University

Expanded Research

32

Programs

at the Extended Facility

Extract density dependent ΛN interaction

HIHR

Ultra-high-resolution Λ hypernuclei spectroscopy

- intense dispersion matched π beam
- **1.1** Systematic ΛN scattering measurement
 - intense polarized Λ beam

Investigate diquarks in baryons

High-resolution charm baryon spectroscopy

• intense high-momentum π beam

K10

High-resolution multi-strange baryon spectroscopy

• intense high-momentum separated K beam

Search for new physics beyond the SM

Expanded Research Programs

37

at the Extended Facility

Behaver of non-perturbative QCD in low energy regime Hadron Physics: Diquarks in Baryons

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Behaver of non-perturbative QCD in low energy regime Hadron Physics: Diquarks in Baryons

How quarks build hadrons?

Investigate diquarks in baryons toward understanding of dense quark matter

Charm Baryon Spectroscopy

using intense high-momentum π beam @ High-p (π 20)

Establish a diquark (ud)

 Λ_c^* : Disentangle "collective motion of ud" and "relative motion between u and d"

Multi-Strange Baryon Spectroscopy using intense high-momentum K beam @ K10

Diquarks in different systems

- **Ξ**^{*}: *us/ds* diquark
- $\mathbf{\Omega}^*$: the simplest *sss* system
 - \rightarrow diquark is expected to be suppressed

Systematic measurements will reveal

¹⁰²⁵ the internal structure of baryons through the diquarks

Efforts leaded by Hadron Hall Users' Association

- 3rd White Paper for Hadron Extension
 - <u>https://arxiv.org/pdf/2110.04462</u>
- Discussion on step-by-step realization
 - A town-hall meeting was held on February 20, 2025.
 - The next meeting will be September 26-27, as a post workshop of Hyp2025.

Hadronic Physics for the future J-PARC

What do we like to know from hadronic physics?

- How is the hadron mass generated?
 - It might be clear from theory, but how about experiment?
 - What should be measured?
 - We are conducting E16, the phi mass experiment. What is the next? How about other directions rather than getting more statistics?
 - Jlab/EIC are going to measure gravitational structure functions, which are connected to mass.
- What are the effective degrees of freedom for hadrons?
 - What can we draw physics beyond the E50 experiment?
- Parton structure of hadrons
 - J-PARC may do a good job especially large x regions, because of its "low" energy.
 - Structures related with strange quarks may be good at J-PARC.

Few words

We should do

- Continuous workshops and meetings
- Discussions not only on a single experiment, but also on a broad view of physics that will convince researchers of other fiellds
- How about a white paper on "Hadronic physics in Japan (Asia)? at J-PARC?
- In Japan, the current funding situation is different from the one 10 years ago. Even KEK might not be able to bring big amount of money at once.
- Mixture of many large/mid-size fundings by collaborating universities/institutions would be realistic.
- For myself, the secondary beams at the high-momentum beamline would be one of the targets.
- What is the next direction of hadronic physics of RCNP? March 3, 2025 Korea University

Physics and Facility

- Facility is a part of the experiment.
 - Without particle beams, no one can conduct an experiment.
 - Quality of the beams defines the scope of the experiment in many cases.
- Physics is a key to develop facilities.
 - Facility equipment needs a lot of knowledge and development of physics. The situation is the same as detector development.

As a facility physicist

- Several ways of success
 - Be a super generalist who knows wide variety of things with much deep insight
 - Knowledge of detectors, analysis, accelerators, utilities such as cooling water and electricity,
 - Be a super expert who has the deepest knowledge
 - Be a super manager who prepares enough resources for the facility
 - These are sometimes exclusive, but sometimes somehow comprehensive
 - Be patient, as facility construction needs (a lot of) time
- Words to "pure" physicists
 - Physicists at facilities are a strong and indispensable collaborator to establish your physics

Words from Prof. Totsuka

- Prof. Yoji Totsuka, 1942 2008
 - neutrino physicist, worked with Prof. Koshiba
 - professor of U. Tokyo
 - KEK Director General 2003 2006

- "Experimentalists should do anything needed"
 - This means, in order to realize an experimental study, researchers have to work with not only "physics-related" matters, but also any other things needed. He said he went out drinking many times with local people around Kamioka, where a large-scale neutrino detector is located, to get locals involved.

Summary

- J-PARC
 - There were K, E, M, and N arenas at JHF.
 - The E arena went to the tandem accelerator at JAEA, and then RIKEN.
 - M and N arenas have been realized as MLF of J-PARC.
 - Among the originally proposed physics of the K-arena, neutrino physics and strangeness nuclear physics with low-momentum K/pi have been realized somehow.
 - Φ mass experiment with the primary beam is being realized.
- EIC
 - Big project
 - Japan will contribute with some amount of money.
 - Korea will also collaborate?
 - This is the major project of the next generation hadronic physics in the US.

Summary

- Extenstion of J-PARC Hadron Experimental Facility
 - 150~200 Oku Yen (100~150 M\$) project
 - Recent funding situation may not allow funding approval for all the project at once.
 - "Staging" may be required.
- Secondary beams at the high-momentum beamline
 - Indispensable for E50
 - These beams will allow more physics.
 - Let's show a thorough view with these beams.