

Simulation for the direct measurement of the ³⁴Ar(α,p)³⁷K reaction

Seungkyung Do Korea University

Contents

- Motivation
- Beamline
- Detector
- Simulation
- Summary

Motivation

• X-ray burst : Thermonuclear explosion on the surface on a neutron star in a binary system

- Nucleosynthesis occurs through αp and rp-processes
- Heavy-element production and luminosity curve of X-ray burst can be investigated through the (α,p) reaction
- Some Type-1 X-ray burst luminosity curve represent double peaks
- ³⁰S and ³⁴Ar can be waiting points which enter $(p,\gamma)-(\gamma,p)$ equilibrium due to low $Q(p,\gamma)$ -value & long β -decay life time

Goals of Experiment

A.Kim, TPC Collaboration Meeting (2024)

- The experimental data corresponding to energy levels within Gamow window (7.71 MeV < E_{x,³⁸Ca} < 10.21 MeV) have not been measured.
- In our experiment, the excitation function of ${}^{34}Ar(\alpha,p){}^{37}K$ will be obtained for 9.1 MeV < $E_{x}{}^{38}C_a$ < 14.6 MeV
 - Identify the existence of resonances states in ³⁸C
 - Measure the cross section of ${}^{34}Ar(\alpha,p){}^{37}K$
 - Determine the reaction rate in the Gamow window for the first time

Beamline

- CRIB (CNS Radio-Isotope Beam separator) → constructed and operated by CNS, University of Tokyo
 - \rightarrow located at RIBF (RIKEN Nishina Center)

Detector

• AToM-X (Active target TPC for Multiple nuclear eXperiment)

• The one of AT-TPC that enables

large angular+the high resolution+the high detectioncoverage+the high resolution+the high detection

- Most of the skills and knowhows is taken from TexAT_v2
- The active area : 244(X) \times 185(Y) \times 289(Z) mm^3
- Octagonal shape (The dead layer effect \downarrow)
- Target/Detection gas : Ar , CH_4 , C_4H_{10} , $He/CO_2~$..

Simulation

Goals of Simulation

- Assess the feasibility of the actual experiment
- Measure detector efficiency
- Identify potential systematic errors
- Develop and test analysis macros

* Garfield

: A simulation tool modeling gas-based particle detectors and electric field configurations

* Nptool

- : It supports *Geant4 simulations and analysis, with a particular focus on implementing reactions in Geant4 simulations
- : primarily designed for nuclear physics experiments involving exotic beams
- *Geant4 : Toolkit for simulating the passage of particle through matter

Simulation list

- **1.** ¹⁴O(α,p)¹⁷F Garfield simulation Verify the gating grid efficiency
- **2.** ¹⁴O(α,p)¹⁷F Garfield simulation Check the impact of gating grid from Micromegas map
- 3. ³⁴Ar(α,p)³⁷K Nptool simulation Get recoils information in active area (Energy, Vertex, Angular Distribution, ...)

Verify the gating grid efficiency

- Gating grid was used in ${}^{14}O(\alpha,p){}^{17}F$ experiment using TexAT_v2 to reduce noise by absorbing some of the electrons
- Micromegas (Micro-Mesh GASeous detector system) consists of a highly segmented anode readout board and is designed to track charged particles

Check the impact of gating grid from Micromegas map

³⁴Ar(α,p)³⁷K Nptool simulation

Get recoils information in active volume

- **Setting** Beam : ³⁴Ar (20.4 MeV/u)
 - Target : ${}^{\textbf{4}}\textbf{He}$ (${}^{4}\text{He}$: CO_2=97 : 3 , Mixed gas)
 - Internal Field : -400 V/cm (\hat{y})

Summary

- The 34 Ar(α ,p) 37 K is one of the key reactions for understanding the luminosity curve of the double peak and nuclear synthesis mechanism in X-ray bursts
- Through this experiment, we will identify the existence of resonances states in ³⁸Ca, measure the cross section of ³⁴Ar(α,p)³⁷K, and determine the reaction rate in the Gamow window for the first time
- We will use the efficient new AT-TPC, AToM-X, that has been devised at CENS

(Center for Exotic Nuclear Studies)

- To verify the reliability of the simulation, two simulations of the gating grid in the 14O(a,p) experiment were performed, confirming that the simulation results are in good agreement with the actual experiment.
- Currently, the nptool simulation for the 34Ar(a,p) experiment needs further refinement.

Thank you !

Motivation

• X-ray burst : Thermonuclear explosion on the surface on a neutron star in a binary system

- Nucleosynthesis occurs through αp and rp-processes
- Heavy-element production and luminosity curve of X-ray burst can be investigated through the (α,p) reaction
- Some Type-1 X-ray burst luminosity curve represent double peaks
- ³⁰S and ³⁴Ar can be waiting points which enter $(p,\gamma)-(\gamma,p)$ equilibrium due to low Q (p,γ) -value & long β -decay life time

Ca

using a ³⁴Ar beam from CRIB and an active target time projection chamber

• Excitation function of 34 Ar(α ,p) 37 K will be obtained for E_x= 9.1 – 14.6 MeV (in 38 Ca)

, which includes partially the Gamow window

Identify the existence of resonances states in ³⁸Ca Measure the cross section of ³⁴Ar(α,p)³⁷K & Determine the reaction rate in the Gamow window for the first time

: Active target TPC for Multiple nuclear eXperiment

• Consists of

1) Field cage

2) Solid state detector (Silicon and CsI detectors)

3) Micromegas (MICRO MEsh GASeous detector system)

4) Chambers, Electronics ...

: Active target TPC for Multiple nuclear eXperiment

180mn

• Consists of

1) Field cage

- It provide uniform Electric field in the active volume
- It made of PCB board (Type 1) and

Field cage Au-plated tungsten wire (50 μ m-thick) (Type 2) due to the particle transmission (99.5%).

Image: product of the sector of the sector

260mm

300mm

: Active target TPC for Multiple nuclear eXperiment

• Consists of

1) Field cage

- It provide uniform Electric field in the active volume
- It made of PCB board (Type 1) and

Au-plated tungsten wire (50 μ m-thick) (Type 2) due to the particle transmission.

: Active target TPC for Multiple nuclear eXperiment

• Consists of

- 3) Micromegas (A gaseous particle detector) ver.1
- Tracking charged particles (beam, recoils, ..)
- Electrons from the ionization are amplified between GEM & mesh & readout pad

ver.2

- Resistive layer technique
 - + Capacitive sharing method applied

: Active target TPC for Multiple nuclear eXperiment

ver.2 Resistive layer technique + Capacitive sharing method applied

: Active target TPC for Multiple nuclear eXperiment

ver.2 Resistive layer technique + Capacitive sharing method applied

- Pixel size : $4 \times 4 \text{ mm}^2$ pads (expected **position resolution < 1mm**)
- Hit information can be obtained by **different signal heights** in multiple pads.

Garfield Simulation

25

Output RootFile

• Histograms

Output RootFile

2025 CENuM Workshop

³⁴Ar(α,p)³⁷K Nptool simulation

