

Measurements of ADC & Energy of TPC using RNN

Jinsu Kim Sejong University 2025 CENuM Workshop

CONTENTS

1. Motivation

2. Finding the Accurate ADC using RNN

2-1. What is RNN 2-2. RNN with Pulse Simulation data

3. Summary

1. Motivation

1. Motivation Δ Proton data [KeV/mm Deuteron data GARFIELD++ GARFIELD++ 10 dE/dx | **Saturated Pulse** Od 10.6 TB 10⁻¹ TIME information > TIME BUCKET ENERGY information > ADC 0.2 40 60 80 100 120 140 160 180 200 Si+CsI energy [MeV] 20 40 60 80 100 120 140 160 180 200 Si+Csl energy [MeV] 20

Yechan Cheon and Seunghwan Lee for the LAMPS Collaboration, NIM A 1066, 169610 (2024)

It is essential to obtain the precise maximum of the saturated pulse

```
off-peak ≻ input
in-peak ≻ output
```


2. Finding the Accurate ADC using RNN (1) What is RNN?

Feedforward Neural Network

Recurrent Neural Network

2. Finding the Accurate ADC using RNN (1) What is RNN?

Data Information CENS LILAK project Simulation data

ADC according to the TIME BUCKET ➤ Input MAX ADC ➤ Output

Peak Information

- ADC : (1000,3000) Random
- TB : (100,300) Random

7

8

The RNN increases the width compared to conventional methods. Better accuracy in predicting uncertainty due to its symmetry.

3. Summary

- 1. Attempted to estimate the Max ADC of saturated pulse using RNN.
- 2. There is an advantage in predicting uncertainty more accurately, but the width needs to be reduced.
- 3. **Future Plan**: Use the RNN tool with data obtained from HIMAC.

Thank you