Measurement of the transverse single spin asymmetry for very forward π^0 production in diffractive and non-diffractive processes

CENuM Workshop

17/Jan/2024

Seunghwan Lee

For the RHICf and STAR Collaborations

2025. 1. 18.

Outline

- **1. Introduction**
- 2. RHICf and STAR experiments
- 3. Analysis
 - **3-1 Event classifying**
 - **3-2 Simulation**
 - 3-3 Corrected A_N

Introduction

Proton spin mystery

- Quarks only carried **30%** of the proton spin
- We don't understand the component of proton spin yet

Transverse single spin asymmetry (TSSA)

• Theorical background

Sivers and Collins effects in pp collisions

• These frameworks are related to spin structure and orbital angular momentum

2025. 1. 18.

Transverse single spin asymmetry (TSSA)

• Definition

- A_N represents the asymmetric production of scattered final-state particles depending on the spin direction of the incoming particles.
- Sivers and Collins frameworks can predict the large A_N (pQCD prediction ~ 0)

Transverse single spin asymmetry (TSSA)

• Measurements

• $A_{\rm N}$ for charged pion and neutral pion in forward region behavior non-zero

Diffraction in p-p collision

(d) Central diffraction (CD)

Diffractive process:

• Color Singlet Exchange (Pomeron exchange)

🚳 SEJONG UNIVERSITY

2025. 1. 18.

- Large Rapidity Gap
- Final state proton

• Color Singlet (such as photon or pomeron) exchange could contribute the TSSA

TSSA with Diffraction

CENuM Workshop

2025. 1. 18.

RHICf and STAR experiments

STAR experiment

- RHIC collider can produce the (transversally or Longitudinally) polarized proton beam
- p + p collision @ $\sqrt{s} = 510$ GeV
- Proton polarization efficiency up to 70%

STAR detectors

- BBC-Small (3.4 < $|\eta|$ < 5.0)

STAR B-TOF (Barrel Time-Of-Flight) $(|\eta| < 1)$

• BBC and B-TOF are used in this study

RHICf experiment

2025. 1. 18.

RHICf experiment

RHICf π^0

RHICf Neutron

• RHICf had run for polarized $p^{\uparrow} + p$ collisions at $\sqrt{s} = 510$ GeV (Luminosity ~ 10³¹ cm⁻² s⁻¹)

• Able to measure particles in $0.0 < P_T < 1.0$ GeV/c and $6 < \eta < 11$

Motivation

- RHICf π^0 and Neutron is expected to be dominated by the diffractive processes (6 < η < 11)
- It is possible that RHICf particles originated from diffractive and non-diffractive.

• We want to find out the originating of TSSA of π^0 and Neutron with RHICf+STAR study

Analysis

Event classification

(Non-)Diffractive-Likely-Event (DLE)

RHICf+STAR simulation

• Event generators:

- 1. PYTHIA8 Detroit tune, SoftQCD
- 2. HERWIG7 Soft tune
- 3. EPOS-LHC
- 4. QGSJETII-04
- Definition of contamination ratio, R_c

$$R_C = \frac{N_{process}}{N_{Trig}}$$

 $N_{process}$ = number of each **truth** process events in selected events N_{Trig} = number of selected events according to conditions

• This data set also designed for checking the ratio of processes in each condition events

2025. 1. 18.

SEJONG UNIVERSITY

Contamination Ratio, *R*_C

• For π^0

- Each condition has a truth process ratio of more than 80%
- Other processes are slightly contribute in each DLE

Contamination Ratio, *R*_C

For Neutron

$A_{\rm N}$ correction

• Correction method

$$R_{i,j}^{C} \cdot A_{N,j}^{corr} = A_{N,i}^{measured}$$

$$\begin{pmatrix} R_{SDLE,SD}^{C} & R_{SDLE,DD}^{C} & R_{SDLE,ND}^{C} \\ R_{DDLE,SD}^{C} & R_{DDLE,DD}^{C} & R_{DDLE,ND}^{C} \\ R_{NDLE,SD}^{C} & R_{NDLE,DD}^{C} & R_{NDLE,ND}^{C} \end{pmatrix} \begin{pmatrix} A_{N,SD}^{corr} \\ A_{N,NDD}^{corr} \\ A_{N,ND}^{corr} \end{pmatrix} = \begin{pmatrix} A_{N,SDLE}^{measured} \\ A_{N,DDLE}^{measured} \\ A_{N,NDLE}^{measured} \end{pmatrix}$$

 $R_{i,j}^{C}$ = DLE contamination ratio matrix

$$A_{N,i}^{corr}$$
 = corrected DLE A_N matrix

 $A_{N,i}^{measured}$ = measured DLE A_N matrix

Corrected $A_{\rm N}$ for π^0

• Systematic uncertainty for MC statistics not shown (scale ~ 10^{-5})

2025. 1. 18.

Corrected A_N for Neutron

• Systematic uncertainty for MC statistics not shown (scale ~ 10^{-5})

Summary

- Diffractive processes might be contributed to TSSA
- RHICf experiment measured the A_N for π^0 and Neutron ($\eta > 6$)
- (Non-)Diffractive Event classification conducted with RHICf+STAR correlation study
- $A_{\rm N}$ for RHICf π^0 and Neutron significantly depend on diffractive processes
- More detailed measurements with several models will be studied
- Preliminary result will be received and present on INPC2025

Thank you

