Mixing mechanism for the $J^P = 0^+$ mesons in the light quark system

Hungchong Kim (Korea University), K.S.Kim (Korea Aerospace University)

This talk is based on arXiv: 2410.18589 (submitted to PRD)

CeNUM workshop, 2025 1/16-1/19, 제주 KAL 호텔, 제주 서귀포

Overview

Among high-mass resonances in J^P = 0⁺, there appear to be three flavor nonets in PDG,

 $\begin{array}{l} 0^+_A: \ a_0(980), K^*_0(700), f_0(500), f_0(980) \\ 0^+_B: \ \underline{a_0(1450)}, K^*_0(1430), f_0(1370), f_0(1500) \\ 0^+_C: \ a_0(1710), K^*_0(1950), f_0(1710), f_0(1770) \end{array}$

- Currently, the marginal ordering in 0_B^+ , $M[a_0(1450)] \ge M[K_0^*(1430)]$, is difficult to understand.
- In this work, we propose a mixing mechanism involving two-quark states and tetraquarks to account for this mass ordering.

Outline

- Lowest-Lying mesons
- High-Mass resonances
- Two-Quark $[q\bar{q}(\ell = 1)]$ Description of High-Mass Resonances
- Tetraquark Description
 Tetraquark Structure for the 0⁺_A and 0⁺_B Nonets
- Mass Ordering of the 0⁺_B Nonet
- Mixing Mechanism and its formulation
- Results

 $\begin{array}{l} 0^+_A: \ a_0(980), K^*_0(700), f_0(500), f_0(980) \\ 0^+_B: \ a_0(1450), K^*_0(1430), f_0(1370), f_0(1500) \\ 0^+_C: \ a_0(1710), K^*_0(1950), f_0(1710), f_0(1770) \end{array}$

Lowest-lying mesons

- As well known, the lowest-lying mesons are composed of two-quarks, $q\bar{q}$ (q = u, d, s).
- Because of this, the lowest-lying mesons have
 - spin and parity as $J^P = 0^-, 1^-$.
 - They form a flavor nonet, $q\bar{q} \in 9_f$ $(3_f \otimes \overline{3}_f = 1_f \oplus 8_f)$ in each spin channel
 - Their isospins: $\bigvee \otimes \bigtriangleup \Rightarrow I = 0, \frac{1}{2}, 1$

• Another characteristics, particularly relevant in this talk, is the mass ordering : $M[(q\bar{q})_{I=1}] < M[(q\bar{q})_{I=1/2}]$

 $m_{\pi}(u\bar{d}) < m_{K}(u\bar{s}), m_{\rho}(u\bar{d}) < m_{K^{*}}(u\bar{s})$ \times For isoscalar (I = 0) members, the mass ordering is obscured by ideal mixing and the anomaly.

XNote that the PDG is continuously updated.

High-mass resonances

up to spin-2

 J^P

 $a_0(1710)$ and $f_0(1770)$ are recently included

in the PDG.

$I^P - 0^+$	Ι	Meson	Mass(MeV)	$\Gamma(MeV)$	
J = 0	0	$f_0(500)$	400 - 800	100 - 800	
	0	$f_0(980)$	990	10 - 100	
	1	$a_0(980)$	980	50 - 100	
	0	$f_0(1370)$	1200 - 1500	200 - 500	
	1	$a_0(1450)$	1439	258	
	0	$f_0(1500)$	1522	108	
0++	0	$f_0(1710)$	1733	150	
0	1	$a_0(1710)$	1713	107	
	0	$f_0(1770)$	1784	161	
	1	$a_0(1950)$	1931	271	
	0	$f_0(2020)$	1982	436	
	0	$f_0(2100)$	2095	287	
	0	$f_0(2200)$	2187	210	
	0	$f_0(2330)$	2314(?)	?	
	1/2	$K_0^*(700)$	845	468	
0+	1/2	$K_0^*(1430)$	1425	270	
	1/2	$K_0^*(1950)$	1957	170	
			1		
$I^{P} = 1^{+}$	1	Meson	Mass (Me	(MeV) Γ (MeV)	
,	0	$h_1(1170)$	1166	375	
1+-	_ 1	$b_1(1235)$) 1229.5	142	
1	1	$h_1(1415)$	1409	78	
	0	$h_1(1595)$	5) 1594	384	
1.71	1	$a_1(1260)$) 1230	250-600	
1+-	0	$f_1(1285)$) 1281.8	23	
	+ 0	$f_1(1420)$) 1428.4	56.7	
	0	$f_1(1510)$) 1518	73	
	1	$a_1(1640$) 1655	250	
	1/	$2 K_1(1270)$	0) 1253	90	
1+	1/	$2 K_1(1400)$	0) 1403	174	
(24) 2	1/	$2 K_1(1650)$	0) 1650	150	

$= 2^{+}$	Ι	Meson	Mass (MeV)	Γ (MeV)
- 4	0	$f_2(1270)$	1275.4	187
	1	$a_2(1320)$	1318.2	107
	0	$f_2(1430)$	1430	?
	0	$f_2(1525)$	1517.3	72
	0	$f_2(1565)$	1571	132
	0	$f_2(1640)$	1639	100
0++	1	$a_2(1700)$	1706	380
2	0	$f_2(1810)$	1815	197
	0	$f_2(1910)$	1900	?
	0	$f_2(1950)$	1936	464
	0	$f_2(2010)$	2011	202
	0	$f_2(2150)$	2157	152
	0	$f_2(2300)$	2297	149
	0	$f_2(2340)$	2346	331
a+	1/2	$K_{2}^{*}(1430)$	1427.3	100
2	1/2	$K_{2}^{*}(1980)$	1990	348

- The high-mass states have spin, parity, charge conjugation, $J^{PC} = 0^{++}, 1^{++}, 1^{+-}, 2^{++}$.
- Isospins are restricted to $I = 0, \frac{1}{2}, 1$.

What could be the structure of the high-mass states?

$q\overline{q}(\ell=1)$ description

One way to view is that the high-mass resonances are orbital excitations of the lowest-lying nonets, $[q\bar{q}(\ell = 1)]$.

 This description can reproduce the quantum numbers of the high-mass resonances.

 $[q\overline{q} (S=0)] \otimes (\ell=1) \Rightarrow J^{PC} = 1^{+-}$ $[q\overline{q} (S=1)] \otimes (\ell=1) \Rightarrow J^{PC} = 0^{++}, 1^{++}, 2^{++}$

$$C = (-)^{\ell+S}$$

for charge neutral
members

- Moreover, the $q\bar{q}(\ell = 1)$ description forms a flavor nonet, which explains the isospin states ($I = 0, \frac{1}{2}, 1$) of the high-mass resonances.
- There seems more than one nonet in each quantum number (radial excitations nJ^{PC} , $n = 1, 2, \dots$?)
- The mass ordering, $M[(q\bar{q})_{I=1}] < M[(q\bar{q})_{I=1/2}]$, is still expected to be valid for the $q\bar{q}(\ell = 1)$ structure; however, it does not appear to hold universally.

• For $J^P = 1^+, 2^+$, the mass ordering, $M[(q\bar{q})_{I=1}] < M[(q\bar{q})_{I=1/2}]$, is satisfied to some extent.

 $J^{P} = 1^{+-}: b_{1}(1235), K_{1}(1270), h_{1}(1170), h_{1}(1415)$ $1^{++}: a_{1}(1260), K_{1}(1400), f_{1}(1285), f_{1}(1420),$ $2^{++}_{A}: a_{2}(1320), K^{*}_{2}(1430), f_{2}(1270), f_{2}(1430)$ $2^{++}_{B}: a_{2}(1700), K^{*}_{2}(1980), f_{2}(1640), f_{2}(1810)$

 $I = 1 \qquad I = 1/2$ $M[b_1(1235)] \leq M[K_1(1270)]$ $M[a_1(1260)] < M[K_1(1400)]$ $M[a_2(1320)] < M[K_2^*(1430)]$

 $M[a_2(1700)] < M[K_2^*(1980)]$

J^{PC}	Ι	Meson	Mass (MeV)	Γ (MeV)
8	0	$h_1(1170)$	1166	375
++-	1	$b_1(1235)$	1229.5	142
1 1	$h_1(1415)$	1409	78	
	0	$h_1(1595)$	1594	384
8	1	$a_1(1260)$	1230	250-600
1^{++} $\begin{array}{c} 0\\ 0\\ 0 \end{array}$	0	$f_1(1285)$	1281.8	23
	$f_1(1420)$	1428.4	56.7	
	0	$f_1(1510)$	1518	73
	1	$a_1(1640)$	1655	250
	1/2	$K_1(1270)$	1253	90
1^+ 1/2	1/2	$K_1(1400)$	1403	174
	1/2	$K_1(1650)$	1650	150

J^{PC}	Ι	Meson	Mass (MeV)	Γ (MeV)
	0	$f_2(1270)$	1275.4	187
	1	$a_2(1320)$	1318.2	107
	0	$f_2(1430)$	1430	?
	0	$f_2(1525)$	1517.3	72
	0	$f_2(1565)$	1571	132
	0	$f_2(1640)$	1639	100
0++	1	$a_2(1700)$	1706	380
2	2 0	$f_2(1810)$	1815	197
	0	$f_2(1910)$	1900	?
	0	$f_2(1950)$	1936	464
	0	$f_2(2010)$	2011	202
	0	$f_2(2150)$	2157	152
	0	$f_2(2300)$	2297	149
	0	$f_2(2340)$	2346	331
a+	1/2	$K_{2}^{*}(1430)$	1427.3	100
2	1/2	$K_{2}^{*}(1980)$	1990	348

7

• For $J^P = 0^+$, the following nonets can be identified, but the expected mass ordering, $M[(q\bar{q})_{I=1}] < M[(q\bar{q})_{I=1/2}]$ is not satisfied for the first two nonets.

$J^P =$	• 0+			
J^{PC}	Ι	Meson	Mass(MeV)	$\Gamma(MeV)$
*	0	$f_0(500)$	400 - 800	100 - 800
	0	$f_0(980)$	990	10 - 100
	1	$a_0(980)$	980	50 - 100
	0	$f_0(1370)$	1200 - 1500	200 - 500
	1	$a_0(1450)$	1439	258
	0	$f_0(1500)$	1522	108
0++	0	$f_0(1710)$	1733	150
0	1	$a_0(1710)$	1713	107
	0	$f_0(1770)$	1784	161
	1	$a_0(1950)$	1931	271
	0	$f_0(2020)$	1982	436
	0	$f_0(2100)$	2095	287
	0	$f_0(2200)$	2187	210
	0	$f_0(2330)$	2314(?)	?
	1/2	$K_0^*(700)$	845	468
0^{+}	1/2	$K_0^*(1430)$	1425	270
	1/2	$K_0^*(1950)$	1957	170

 $\begin{array}{l} 0_{A}^{+}: \ a_{0}(980), K_{0}^{*}(700), f_{0}(500), f_{0}(980) \\ 0_{B}^{+}: \ a_{0}(1450), K_{0}^{*}(1430), f_{0}(1370), f_{0}(1500) \\ 0_{C}^{+}: \ a_{0}(1710), K_{0}^{*}(1950), f_{0}(1710), f_{0}(1770) \end{array}$

$$I = 1 \qquad I = 1/2$$

$$0_A^+: M[a_0(980)] > K_0^*[(700)] \text{ (inverted!)}$$

$$0_B^+: M[a_0(1450)] \gtrsim K_0^*[(1430)] \text{ (inverted!)}$$

$$0_C^+: M[a_0(1710)] < M[K_0^*(1950)]$$

The inverted mass ordering can be understood if they are tetraquarks. [Jaffe(1977)]

Tetraquark description

• Tetraquark nonet $(qq\bar{q}\bar{q})$ can be constructed by combining diquark $(\bar{3}_f)$ -antidiquark (3_f) .

$$\begin{split} \overline{3}_{f} \otimes 3_{f} &= \mathbf{1}_{f} \bigoplus \mathbf{8}_{f} \\ \hline \mathbf{q} \mathbf{q} \quad \overline{\mathbf{q}} \mathbf{q} \\ \hline \mathbf{1}_{f} &= \frac{1}{\sqrt{3}} T^{m} \overline{T}_{m} \\ \mathbf{1}_{f} &= \frac{1}{\sqrt{2}} \epsilon^{ijk} q^{j} q^{k} \equiv [q^{j} q^{k}] \\ \mathbf{1}_{g} &= \frac{1}{\sqrt{3}} \mathbf{1}_{g} \\ \mathbf{1}_{g} &= \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \\ \mathbf{1}_{g} &= \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \\ \mathbf{1}_{g} &= \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \\ \mathbf{1}_{g} &= \frac{1}{\sqrt{3}} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \mathbf{1}_{g} \\ \mathbf{1}_{g} &= \frac{1}{\sqrt{3}} \mathbf{1}_{g} \mathbf{1}_{g$$

Tetraquarks exhibit the "inverted mass ordering", $[8_f]_1^2(sud\bar{s}) > [8_f]_1^3(ud\bar{d}\bar{s})$. $a_0(980) > K_0^*(700), a_0(1450) \ge K_0^*(1430)$ (marginal) 9

Tetraquark structure for the 0_A^+ and 0_B^+ nonets

- $\overline{3}_f$ diquark has two types that differ by spin-color.
- Spin-0 $qq \Rightarrow$ |Type1>, Spin-1 $qq \Rightarrow$ |Type2>

< qq structure>				
Flavor	Spin	Color		
$\overline{3}_{f}$	0	$\overline{3}_{c}$		
$\overline{3}_{f}$	1	6 _c		

$$|\text{Type1}\rangle: \left[qq \in \left(J = \mathbf{0}, \overline{\mathbf{3}}_{c}, \overline{\mathbf{3}}_{f} \right) \right] \otimes \left[\bar{q}\bar{q} \in \left(J = \mathbf{0}, \mathbf{3}_{c}, \mathbf{3}_{f} \right) \right] \Rightarrow qq\bar{q}\bar{q} \in \left(J = \mathbf{0}, \mathbf{1}_{c}, \mathbf{9}_{f} \right)$$

Well-known tetraquark type, originally proposed for the 0_A^+ nonet (Jaffe).

$$|\text{Type2}\rangle: [qq \in (J = 1, 6_c, \overline{3}_f)] \otimes [\overline{q}\overline{q} \in (J = 1, \overline{6}_c, 3_f)] \implies qq\overline{q}\overline{q} \in (J = 0, 1_c, 9_f)$$

Another type proposed in 2017 [EPJC 77, 3 (2017)].

 $\begin{array}{ll} & \underline{\mathrm{spin}} & \underline{\mathrm{color}} & \underline{\mathrm{flavor}} \\ |\mathrm{Type1}\rangle = |000\rangle \otimes |\mathbf{1}_c \bar{\mathbf{3}}_c \mathbf{3}_c\rangle \otimes |\mathbf{9}_f \bar{\mathbf{3}}_f \mathbf{3}_f\rangle \\ |\mathrm{Type2}\rangle = |011\rangle \otimes |\mathbf{1}_c \mathbf{6}_c \bar{\mathbf{6}}_c\rangle \otimes |\mathbf{9}_f \bar{\mathbf{3}}_f \mathbf{3}_f\rangle \end{array}$

 $|Type1\rangle$, $|Type2\rangle$ mix through V_{CS} !, $\langle Type2 | V_{CS} | Type1 \rangle \neq 0$ \Rightarrow None of them alone can describe physical states.

$$V_{CS} \propto -\sum_{i < j} \lambda_i \cdot \lambda_j \frac{J_i \cdot J_j}{m_i m_j}$$

• Instead, the mixture of $|Type1\rangle$ and $|Type2\rangle$, which diagonalizes V_{CS} , can represent the tetraquark structure of the two nonets, 0_A^+ and 0_B^+ .

$$|0_{B}^{+}\rangle_{4} = -\alpha |\text{Type1}\rangle + \beta |\text{Type2}\rangle |0_{A}^{+}\rangle_{4} = \beta |\text{Type1}\rangle + \alpha |\text{Type2}\rangle$$

 $\Rightarrow 0_B^+: a_0(1450), K_0^*(1430), f_0(1370), f_0(1500)$ $\Rightarrow 0_A^+: a_0(980), K_0^*(800), f_0(500), f_0(980)$

The mixing parameters, α , β , are determined also by the diagonalization, ($\alpha \approx 0.815$, $\beta \approx 0.58$).

We call this the **tetraquark mixing model** for the two nonets.

EPJC(2017) 77, 173, PRD(2018) 97, 094005, PRD(2019) 99, 014005, PRD(2019) 100, 034021, EPJC(2022) 82, 1113, PRD(2023) 108, 074016.

Lessons

- $|0_A^+\rangle_4$ and $|0_B^+\rangle_4$ describe the tetraquark part of the 0_A^+ and 0_B^+ nonets.
- These tetraquarks are orthogonal to each other.

$$_{4}\big\langle 0_{A}^{+}\mid 0_{B}^{+}\,\rangle _{4}=0$$

Mass ordering of the 0_B^+ nonet

- The tetraquark mixing model resolves the mass ordering in the 0_A^+ nonet: $M[a_0(980)] > M[K_0^*(700)] \Rightarrow$ the 0_A^+ nonet could be tetraquarks.
- However, the marginal mass ordering within the 0_B^+ nonet remains unexplaind !

If the tetraquark picture is valid, we expect $M[a_0(1450)] > M[K_0^*(1430)]$ by approximately 150 MeV ($\approx m_s - m_u$)! But experimentally, $M[a_0(1450)] \ge M[K_0^*(1430)]$ by only 20 MeV !

• This close mass ordering can be explained if the 0_B^+ nonet includes a $q\bar{q}(\ell = 1)$ component $(|0^+\rangle_2)$ in addition to the tetraquark component !

 $|0_B^+\rangle = a|0_B^+\rangle_4 + b|0^+\rangle_2$

- This is because the $q\bar{q}(\ell = 1)$ component reduces the mass gap from the tetraquark ordering.
- Is there a relevant framework that generates the $|0^+\rangle_2$ component?

Mixing Mechanism

- Black et al. [PRD(2000) 61, 074001] proposed a mixing mechanism to explain the marginal mass ordering in the 0_B^+ nonet.
- They introduced a mixing Lagrangian, \mathcal{L}_{mix} , that connects two nonets, $|0^+\rangle_2$ and $|0^+\rangle_4$,

$$\begin{bmatrix} 0^{+} \\ 2 \\ 0^{+} \\ 4 \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix}$$
 S
$$\begin{bmatrix} [qq] \\ [\bar{q}\bar{q}] \end{bmatrix} \end{bmatrix}$$
 S

$$\square \rangle \quad |\text{nonet1}\rangle = a |0^+\rangle_4 - b |0^+\rangle_2 \\ |\text{nonet2}\rangle = b |0^+\rangle_4 + a |0^+\rangle_2$$

This mixing mechanism generates two distinct nonets, nonet1 and nonet2, whose wave functions are linear combinations of the tetraquark $(|0^+\rangle_4)$ and two-quark $(|0^+\rangle_2)$ nonets.

There are three nonets in the PDG. $0_A^+: a_0(980), K_0^*(700), f_0(500), f_0(980)$ $0_B^+: a_0(1450), K_0^*(1430), f_0(1370), f_0(1500)$ $0_C^+: a_0(1710), K_0^*(1950), f_0(1710), f_0(1770)$

Different tetraquark structure

$$|0_B^+\rangle_4 = -\alpha |\text{Type1}\rangle + \beta |\text{Type2}\rangle$$

$$|0_A^+\rangle_4 = \beta |\text{Type1}\rangle + \alpha |\text{Type2}\rangle$$

$$|\text{nonet1}\rangle = a |0^+\rangle_4 - b |0^+\rangle_2 \\ |\text{nonet2}\rangle = b |0^+\rangle_4 + a |0^+\rangle_2$$

$$\Rightarrow \quad |0^+_A\rangle = a |\text{Type1}\rangle_4 - b |0^+\rangle_2 \\ |0^+_B\rangle = b |\text{Type1}\rangle_4 + a |0^+\rangle_2$$

- Black et al. mixed $|Type1\rangle$ and $|0^+\rangle_2$ to generate nonet $1 \Rightarrow 0^+_A$, nonet $2 \Rightarrow 0^+_B$ and explained the mass ordering of the 0^+_B nonet.
- However, it also changes the 0_A^+ structure, diluting its tetraquark nature.
- Furthermore, this mixing provides the same tetraquark structure (|Type1)) for the 0⁺_A and 0⁺_B nonets, making it inconsistent with the tetraquark mixing model.

 $\begin{array}{c}
0_{A}^{+}: a_{0}(980), K_{0}^{*}(700), f_{0}(500), f_{0}(980) \\
 & \left\{\begin{array}{c}
0_{B}^{+}: a_{0}(1450), K_{0}^{*}(1430), f_{0}(1370), f_{0}(1500) \\
0_{C}^{+}: a_{0}(1710), K_{0}^{*}(1950), f_{0}(1710), f_{0}(1770)
\end{array}\right.$

$$|\text{nonet1}\rangle = a |0^+\rangle_4 - b |0^+\rangle_2 \Rightarrow |0^+_B\rangle = a |0^+_B\rangle_4 - b |0^+_B\rangle_4 - b |0^+_B\rangle_4 - b |0^+_B\rangle_4 + a |0^+\rangle_2$$

- Instead, we propose to mix $|0_B^+\rangle_4$ and $|0^+\rangle_2$ to produce nonet1 $\Rightarrow 0_B^+$, nonet2 $\Rightarrow 0_C^+$.
- The 0_B^+ and 0_C^+ nonets share the same tetraquark structure, $|0_B^+\rangle_4$. (no problem here, as we have no constraint on the 0_C^+ nonet.)
- The 0_A^+ nonet is not affected by this mixing and therefore remains a pure tetraquark state of $|0_A^+\rangle_4$.
- If this mixing occurs maximally, the other mixing between $|0_A^+\rangle_4$ and $|0^+\rangle_2$ is unlikely to occur. The $|0^+\rangle_2$ component, which couples maximally with $|0_B^+\rangle_4$, is unlikely to couple with the orthogonal state of $|0_A^+\rangle_4$.

Tetraquark mixing model

$$\begin{array}{l} |0_B^+\rangle_4 = -\alpha |\text{Type1}\rangle + \beta |\text{Type2}\rangle \\ |0_A^+\rangle_4 = \beta |\text{Type1}\rangle + \alpha |\text{Type2}\rangle \end{array} \qquad \Box \searrow \quad {}_4 \langle 0_A^+ | 0_B^+ \rangle_4 = 0 \end{array}$$

Black et al. PRD(2000) 61, 074001

Formulation of the Mixing Mechanism

• Following Black et al., we represent the $|0^+\rangle_2$ and $|0^+\rangle_4$ nonets as tensors,

$$\begin{array}{l} |0^{+}\rangle_{2} \colon \ N'^{b}_{a} = q_{a} \overline{q}^{b} \quad (q_{a} = u, d, s) \\ |0^{+}\rangle_{4} \colon \ N^{b}_{a} = T_{a} \overline{T}^{b} \quad T_{a} = \frac{1}{\sqrt{2}} \epsilon_{abc} q^{b} q^{c}, \\ \overline{T}^{a} = \frac{1}{\sqrt{2}} \epsilon_{abc} \overline{q}_{b} \overline{q}_{c} \end{array}$$
and propose a mixing Lagrangian
$$\begin{array}{l} \mathcal{L}_{mix} = -\gamma \mathrm{Tr}[NN'] \end{array}$$

- This is a simplest invariant term that can be constructed from N'_a^b , N_a^b .
- For the I = 1 and I = 1/2 members,

$$\mathcal{L}_{mix} = -\gamma \phi_{I=1} \phi'_{I=1} - \gamma \phi_{I=1/2} \phi'_{I=1/2}$$

 \Rightarrow The same mathematical procedure can be applied for the I = 1 and I = 1/2 members.

- Note, for the I = 1 and I = 1/2 members, the mixing Lagrangian takes the same form whether it is derived from \mathcal{L}_{mix} or its SU(3) symmetric form of $-\gamma \text{Tr}[\mathbf{8}_{f}\mathbf{8}'_{f}]$.
- Here we consider the mix $N'_a^b (= |0^+\rangle_2)$ and $N_a^b (= |0_B^+\rangle_4)$ that generates the 0_B^+ and 0_C^+ nonets, $|0_B^+\rangle_4 = -\alpha |\text{Type1}\rangle + \beta |\text{Type2}\rangle$

Diagonalizing the mass matrix

To explain this in general, we denote the states as follows:

Mass terms in Lagrangian:

$$-\frac{1}{2}m_{b}^{2}\phi_{b}^{2} - \frac{1}{2}m_{b'}^{2}\phi_{b'}^{2} - \gamma\phi_{b}\phi_{b'} = -\frac{1}{2}(\phi_{b}, \phi_{b'})M^{2}\begin{pmatrix}\phi_{b}\\\phi_{b'}\end{pmatrix}$$

• The diagonalization process expresses the physical masses, M_B^2 , and M_B^2 , as:

$$M_{B}^{2}, = \frac{1}{2} \left[m_{b}^{2}, + m_{b}^{2} + \sqrt{(m_{b}^{2}, - m_{b}^{2})^{2} + 4\gamma^{2}} \right]$$
$$M_{B}^{2} = \frac{1}{2} \left[m_{b}^{2}, + m_{b}^{2} - \sqrt{(m_{b}^{2}, - m_{b}^{2})^{2} + 4\gamma^{2}} \right]$$

• These can be inverted to :

$$m_b^2 = \frac{1}{2} \left[M_B^2 + M_B^2 - \sqrt{(M_B^2 - M_B^2)^2 - 4\gamma^2} \right]$$
$$m_{b\prime}^2 = \frac{1}{2} \left[M_{B\prime}^2 + M_B^2 + \sqrt{(M_B^2 - M_B^2)^2 - 4\gamma^2} \right]$$

What we need is m_b^2 and m_b^2 , for given M_B^2 , and M_B^2 ,. By analyzing them, we can access the validity of the mixing mechanism.

- For M_B^2 , and M_B^2 , these yield m_b^2 and $m_{b'}^2$ as functions of the mixing parameter, γ^2 .
- m_b^2 and m_b^2 , take real values if $\gamma^2 \leq \gamma_{max}^2$.

$$\gamma_{\rm max}^2 = \frac{(M_{A'}^2 - M_A^2)^2}{4}$$

• The diagonalization also expresses the physical states in terms of the pre-mixing states, $m^2 - M^2$

 $|B\rangle = C|b\rangle - D|b'\rangle$ $|B'\rangle = D|b\rangle + C|b'\rangle$

$$C = \frac{m_{b'}^2 - M_B^2}{\sqrt{(m_{b'}^2 - M_B^2)^2 + \gamma^2}}$$
$$D = \frac{M_{B'}^2 - m_{b'}^2}{\sqrt{(m_{b'}^2 - M_{B'}^2)^2 + \gamma^2}}$$

- *C*, *D* represent the overlaps of the physical states with the tetraquark and two-quark components.
 - When $\gamma^2 = 0$, C = 1 and D = 0. i.e., $|B\rangle = |b\rangle$ and $|B'\rangle = |b'\rangle$
 - When $\gamma^2 = \gamma_{max}^2$, $\Box > m_b^2 = m_{b'}^2 = \frac{1}{2} [M_B^2 + M_{B'}^2]$ $C = D = \frac{1}{\sqrt{2}}$
 - For $0 \le \gamma^2 \le \gamma_{max}^2$, we have $0 \le D \le \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \le C \le 1$. $\Rightarrow D \le C$

As we mentioned, this mixing mechanism can be applied to the *I* = 1 and *I* = 1/2 members separately.

For <i>I</i> = 1 :	$ B\rangle \Rightarrow a_0(1450)$ in the 0_B^+ nonet $ B'\rangle \Rightarrow a_0(1710)$ in the 0_C^+ nonet
For $I = 1/2$:	$ B\rangle \Rightarrow K_0^*(1430)$ in the 0_B^+ nonet $ B'\rangle \Rightarrow K_0^*(1950)$ in the 0_C^+ nonet

- This mixing mechanism yields pre-mixing masses, m_b^2 and m_{br}^2 , in the I = 1 and I = 1/2 channels.
- Since these are the masses of pure tetraquarks or pure two-quark states, their mass ordering must be satisfied:

Tetraquarks: $m_b(l = 1) > m_b(l = 1/2)$ Two-quarks: $m_{b'}(l = 1) < m_{b'}(l = 1/2)$

 If these orderings are satisfied with a reasonable gap, it supports the validity of our mixing mechanism.

When $\gamma^2 = \gamma_{max}^2$, we find a reasonable tetraquark mass ordering.

- At $\gamma^2 = 0.186 \text{ GeV}^2$, the pre-mixing tetraquark masses are $m_a = 1.582 > m_K = 1.463 \text{ GeV}$, with $\Delta m = 119 \text{ MeV}$. This gap is consistent with the tetraquark mass ordering.
- Also, $m_{a'} = 1.582 < m_K$, = 1.929 GeV, roughly consistent with the two-quark structure.

This results also provide a generating mechanism for the marginal mass ordering in the 0_B^+ nonet.

- For I = 1, $m[a_0(1450)] = 1.582 \text{ GeV} \Rightarrow M[a_0(1450)] = 1.439 \text{ GeV}$, the mass change, 140 MeV, is substantial !
- For I = 1/2, $m[K_0^* (1430)] = 1.463 \text{ GeV} \Rightarrow M[K_0^* (1430)] = 1.425 \text{ GeV}$, the mass change, 38 MeV, is very small !

⇒ Such a discriminating mass change leads to the marginal gap, $M[a_0(1450)] - M[K_0^*(1430)] = 20$ MeV.

In fact, this discriminating mass change originates from the two-quark component, which strongly affects the isovector channel but has a weaker influence on the isodoublet channel.

This aspect can be observed from the physical wave functions!

Physical wave functions

$ a_0(145) $	$ 0\rangle = C_a$	$ 0_B^+\rangle_4 - l$	$D_a 0^+\rangle_2 \ (I=1)$	K ₀ * (1430	$ 0\rangle\rangle = C_K$	$ 0_B^+\rangle_4 - D_K 0^+\rangle_2 \ (I = 1/2)$
\sim^2	I = 1			1/2		
1	C_a	D_a		C_K	D_K	$m^2 - M^2$
0	1	0	1	1	0	$C = -\frac{m_{b'} - m_B}{-}$
0.05	0.963	0.269		0.992	0.125	$(m_{hl}^2 - M_P^2)^2 + \gamma^2$
0.10	0.917	0.399		0.984	0.179	$\sqrt{10}$ M^2 m^2
0.15	0.849	0.528		0.975	0.221	$D = -\frac{M_{\bar{B}'} - m_{\bar{b}'}}{$
0.17	0.805	0.593		0.972	0.236	$(m_{11}^2 - M_{21}^2)^2 + \gamma^2$
$\gamma^2_{max} \Rightarrow 0.186$	0.707	0.707		0.969	0.248	$\sqrt{\left(\frac{B}{B} \right)^2 + \frac{B}{B}}$

When $\gamma^2 = \gamma_{max}^2$, we find the following:

• For I = 1, $C_a = D_a = 0.707$ $|0_B^+\rangle_4 \implies |a_0(1450)\rangle = 0.71|0_B^+\rangle_4 - 0.71|0^+\rangle_2$

• For
$$I = 1/2$$
, $C_K \gg D_K$
 $|0_B^+\rangle_4 \implies |K_0^* (1430)\rangle = 0.97 |0_B^+\rangle_4 - 0.25 |0^+\rangle_2$

This gives the discriminating mass change in the previous slide !

Summary

- In the PDG, there are three flavor nonets in $J^P = 0^+$.
 - 0_A^+ : $a_0(980), K_0^*(700), f_0(500), f_0(980)$
 - 0_B^+ : $a_0(1450), K_0^*(1430), f_0(1370), f_0(1500)$
 - 0_C^+ : $a_0(1710), K_0^*(1950), f_0(1710), f_0(1770)$
- Currently, the mass ordering between $a_0(1450)$, $K_0^*(1430)$ in the 0_B^+ nonet is difficult to understand.
- This marginal mass ordering might result from the 0⁺_B nonet being a state that includes both two-quark and tetraquark components.
- To investigate this, we developed a mixing mechanism to generate the 0⁺_B and 0⁺_C nonets and calculated the pre-mixing tetraquark states.
- We report that the pre-mixing tetraquark masses for the isovector and isodoublet members are separated by a reasonable mass gap of $\Delta m \approx 119$ MeV.
- The marginal mass ordering in the 0⁺_B nonet appears to arise from the two-quark component, which develops strongly in the isovector channel but weakly in the isodoublet channel.

Thank you for your attention !