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1 .  - I n t r o d u c t i o n .  

The JETSET (PS202) experiment [1] is being performed with an internal target at 
the Low Energy Antiproton Ring (LEAR) at CERN. The aim of the experiment is to 
search for hadronic resonances in the mass range above 2GeV, using in-flight 
antiproton-proton annihilations. Special emphasis has been put on the investigation 
of the gluon-rich reaction 

~p --. ¢¢, 

where the ~-mesons are detected via their decay into two charged kaons. The 
accessible energy range is from the reaction threshold at 2.04 GeV to 2.43 GeV, the 
upper limit being given by the maximum ~-momentum of 2.0GeV/c. The excellent 
momentum resolution of the LEAR ~-beam ( 5 p / p  ~ 10 -3) translates into an 
invariant-mass resolution of O(1 MeV) and makes this experiment especially suited 
for the study of narrow resonances. 

Figure 1 shows a naive quark-line diagram for the reaction ~ p - - ~ ,  which 
demonstrates why it is regarded to be a particularly promising hunting ground for 
,,gluonic, states of hadronic matter. In this simple model, all quark-antiquark pairs of 
the initial ~p-state annihilate into a purely gluonic intermediate state from which two 
s~ quark-antiquark pairs are created. This process is completely quarkqine 
disconnected and should be strongly suppressed according to the empirical 
0kubo-Zweig-Iizuka (OZI)[2] rule. Such suppression may be overcome if a resonant 
intermediate gluonic state (,,glueball,0 is formed. Recent lattice-QCD calculations [3] 
indicate that glueballs with spin-parity of jR__ O- and jR.= 2 + fall into the mass 
range just above 2 GeV. However, other production mechanisms are possible. Quark- 
line-connected processes involve intermediate states such as K* K* or ~ .  The final 
state ~ could be produced via co-~ mixing from an initially produced (oco pair, or s§ 
pairs might be directly produced from the quark sea of the proton or the antiproton. 

Only two experiments have so far published results on the reaction ~p --~ ~ .  In an 
early bubble chamber experiment Davidson et al. [4] isolated six events of the type 
~ p - .  K ÷ K- K ÷ K- at different ~-momenta between 1.6GeV/c and 2.2GeV/c. The 
cross-section for this reaction was calculated to be (3.8 +- 1.7)~b. One of the events 
was compatible with a ~¢ intermediate state, which led to an estimate of 600 nb for 
the resonant reaction ~p ---) ¢~ ---) K + K- K ÷ K - .  At a centre-of-mass energy of 3 GeV 
the experiment R704 at the Intersection Storage Ring (ISR) at CERN [5] measured 
the cross-section for the reaction ~p--, ¢~ to be 25 rib. 

Several experiments have investigated ~¢ production in radiative J/V-decays and 
in hadronic reactions. Strong claims for the observation of glueballs in the region 
above the ~ threshold came from an experiment at the BNL-AGS [6]. In the process 
n - p - - .  ~¢n, an excess of ¢~-events was found compared to uncorrelated ~p--~ 

K ÷ K- K ÷ K- production. The ~ mass spectrum showed a broad structure extending 
from threshold up to 2.5 GeV. In a detailed partial-wave analysis, this structure was 
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Fig. 1. - Quark-line diagram for the reaction ~p---) ~ .  JETSET, Il Nouvo Cimento 107, 2329 (1994) 
played in Fig. 10. Here we show the combinatorial m(KK)
distribution ~six entries per event! for incident p̄ momentum
below and above 1.5 GeV/c . The white region represent the
ff contribution, the gray region shows the fK1K2 contri-
bution, while the black region shows the phase space
(background14K) contribution. We notice that no f peak
has been left in the phase space distribution, indicative of a
successful fit. We also notice the strong increase of the
fK1K2 contribution in the higher momentum region. The
analysis gives a total of approximately 11 400 ff events.
The channel likelihood method is able to separate the

three ff, fK1K2 and (background14K) contributions. In
order to separate the 4K contribution from the background,
we made use of the DE distributions as discussed in Sec.
III A. For this purpose, in order to reduce the errors, a further
compression of the data was performed, grouping them in
nine slices of incident p̄ momentum. The DE distributions
for all intervals are shown in Fig. 11. A clean peak at DE
50 over some background is observed which represents the
total amount of the reaction p̄p!4K including ff and
fK1K2 contributions. These distributions have been fitted
using a Monte Carlo generated shape for the DE distribution
which includes simulations at all energies of ff and 4K
final states, and a background parametrization using the sum
of two Gaussians. The number of non-resonant 4K events
was therefore obtained by

N4K5NT2Nff2NfKK2Nb .

In the above expression, the number of 4K events is the
difference between the total number of events in each bin
(NT), the ff (Nff) and fK1K2 (NfKK) yields which
were obtained from the channel likelihood fits, and the back-
ground (Nb) is drawn from the fits to the DE distributions.
Due to the uncertainty in the background subtraction, a 50%
systematic error has been added quadratically to the statisti-
cal errors. The background below the 4K signal is relatively
small, being in average of the order of 10% increasing to
20% only in the higher momentum regions.

VII. CROSS SECTIONS

Having determined the number of events for each chan-
nel, we have computed the corresponding cross sections as

s5
events

acceptance3luminosity.

Due to decreasing performance of the threshold Čerenkov
counters in the last period of the data taking, part of data
suffer an additional 20% systematic normalization error.
These data represent about 30% of the total and have not
been used in the calculation of the cross sections. However,
properly scaled, these data can be used in the study of the
angular distributions. These cross sections have been cor-
rected for unseen f decay modes and are displayed in Table
I and shown in Fig. 12.
The ff cross section has been corrected assuming phase

space in the calculation of the acceptance. This is not really
a strong assumption as it can be seen from Fig. 6~c!. In
addition, a spin parity analysis of the ff final state has been

performed @37#. This analysis shows that the ff system is
dominated by JPC5211. Correcting the mass spectrum with
the results from the spin-parity analysis has little influence
on the shape of the integrated acceptance as a function of the
ff mass.
Notice that:
The ff, fK1K2 and 4K6 cross sections have different

shapes. The ff cross section, in particular, has a strong
threshold enhancement, while the fK1K2 and 4K6 cross
sections have a smooth increase as a function of the center of
mass energy.
The ff cross section is rather large, about 3.5 mb in the

threshold region.
No evidence for narrow structures is found.
The large ff production close to threshold can be inter-

preted as a violation of the ~OZI! rule. If the OZI rule is
interpreted to forbid strangeness production in p̄p annihila-
tions then the process p̄p!ff can proceed only via the
small ūu , d̄d component present in the f wave function.
With a deviation from ideal mixing u2u0 of only 10 to 40,
the f is nearly 100% s̄ s . We can therefore derive an upper
limit tan4(u2u0)'2.531025 for the ratio of cross sections
sff /svv for production in p̄p annihilation. Although the
cross section of p̄p!vv has not been measured directly, an
estimate can be obtained from the total 2p12p22p0 cross
section @38#, which was measured to be about 5 mb in the
energy range of our experiment. There are many reaction
channels that contribute to this final state. If we estimate that

FIG. 12. Cross sections in mb for the reactions ~a! p̄p!ff , ~b!
p̄p!fK1K2 and ~c! p̄p!2K12K2 corrected for unseen f decay
modes.
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(corresponding to T = Tf0 + TN∗(1535)), with fixed cutoff
parameters !f0 and !N∗(1535), we perform a χ2 fit (fit I) to
the total cross section data for p̄p → φφ [5]. There are a total
of 20 data points.

By constraining the value of the cutoff parameter !f0

between 0.6 and 1.2 GeV and !N∗(1535) around 3.0 GeV based
on the results of Ref. [18], we obtain a minimal χ2/d.o.f. = 2.1
with !f0 = 0.6 GeV and !N∗(1535) = 3.05 GeV. The fit-
ted parameters are gf0p̄p gf0φφ = 0.45 ± 0.08, Mf0 = 2174 ±
3 MeV, and $f0 = 167 ± 27 MeV.

Second, instead of a scalar meson, we study the case
of a tensor meson f2 in the s channel and t- and u-
channel N∗(1535) resonance (corresponding to T = Tf2 +
TN∗(1535)), and we perform a second χ2 fit (fit II). In
this case, we get a minimal χ2/d.o.f. = 1.4 with !f2 =
0.65 GeV and !N∗(1535) = 3.05 GeV. The fitted parameters
are gf2p̄p gf2φφ = −0.12 ± 0.02, Mf2 = 2192 ± 4 MeV, and
$f2 = 177 ± 30 MeV.

Based on the value of the χ2/d.o.f., fit II is preferred to fit I.
It seems to indicate that the p̄p → φφ reaction is dominated by
the exchange of a strange tensor meson with quantum number
JPC = 2++ in the s-channel, in agreement with the study of
Ref. [5]. In addition, a partial-wave analysis of the π−p →
φφn reaction shows that the φφ system is dominant by two
JPC = 2++ states [9], one an S wave and the other a D wave.
The mass of the S-wave state is M = 2160 ± 50 MeV, with
a decay width $ = 310 ± 70 MeV. The mass is in agreement
with our fitted result for the tensor meson.

Next, we show the corresponding fitted results for the total
cross sections in Fig. 2, in comparison with the experimental
data from Ref. [5]. From Fig. 2, one can see that the
experimental total cross section can be described fairly well by
including the contributions from both the N∗(1535) resonance
and the scalar meson f0 or tensor meson f2. The contributions
from N∗(1535) resonance dominates above W = 2.25 GeV,
while the bump structure around W = 2.2 GeV can be well

FIG. 2. Total cross sections for the p̄p → φφ reaction. The
experimental data are taken from Ref. [5]. The curves are the
contributions from s-channel f0 and f2, t- and u-channel N∗(1535)
resonance, and the total results of fits I and II.

FIG. 3. Differential cross sections for p̄p → φφ reaction. The
curves are the contributions from s-channel scalar meson f0 (dash-
dotted) and tensor meson f2 (dotted), t- and u-channel N∗(1535)
resonance (dashed), and the total results of fit I (dash-dot-dotted) and
fit II (solid).

reproduced by considering the contributions from the strange
mesons f0 and f2.
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•  process is disconnected quark lines, According to the Okubo-Zweing-
Iizuka(OZI) rule, this process should be strongly suppressed. 


• Data from the JETSET experiment showed a significant violation of the OZI rule.


• Reaction  may occur through a two-separate process involving meson 
pairs, such as . Upper limit is  (<experimental data).

p̄p → ϕϕ

p̄p → ϕϕ
ωω 10nb

• Strange quarks could be knocked off 
directly from the  sea of the proton 
and the antiproton. Upper limit is 

 (<experimental data).


• OZI violation can occur if a resonant 
glueball like X(2370), which is 
suspected to be a glueball.


• The  reactions can be 
described in terms of the meson pole 
and baryon exchange diagrams.

q̄q

250nb

p̄p → ϕϕ

I. Introduction
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(2.05 ± 0.19) GeV, respectively [5]. In contrast, a recent QCD sum rule calculation predicts the masses of the 2++

and 0�+ glueballs to be (1.86± 0.17) and (2.17± 0.11) GeV [6].
It is suggested that strange quarks could be knocked o↵ directly from the q̄q sea of the proton and the antiproton

to create a pair of � mesons: ��. The strangeness content (1S0 s̄s) of the proton and antiproton might result in the
production of �� through a shake-out or rearrangement process [7]. Importantly, this process does not violate the OZI
rule because it involves connected quark diagrams with higher Fock-space components in the nucleon wave function:
|pi = x

P1
X=0 |uudXi + z

P1
X=0 |uuds̄sXi, |x|2 + |z|2 = 1, where X stands for any number of glueons and light q̄q

pairs. The upper limit for the total cross-section of the p̄p ! �� reaction is given by �(p̄p ! ��) = (|z|/|x|)4 ·�(p̄p !
!!) � 250 nb, which is larger than the value from the �-! mixing e↵ect, but still much smaller compared to the
experimental data.

The interaction between quarks, induced by instantons, could potentially weaken the OZI suppression. A theoretical
study [8] demonstrates that the violation of the OZI rule in the p̄p annihilation is a nontrivial consequence of the
complex structure of the QCD vacuum, which is associated with the existence of the instantons. On the other hand,
the large cross-section for the p̄p ! �� reaction may be explained by considering the hadronic rescattering mechanism.
Each transition in the rescattering diagram is OZI-allowed. Lu et al. studied the role of a K̄K intermediate state
in a triangle diagram in the p̄p ! �� reaction [? ]. The intermediate ⌘⌘ can also contribute to the �� production,
as the ⌘ contains s̄s content. In addition, the ⇡⇡ ! K̄K amplitude could make a sizable contribution. It is worth
noting that the kernel B̄B ! m̄m involving a baryon and antibaryon pair is possible. A full calculation involving
all possible hadronic rescattering diagrams would be necessary to predict the detailed shape and magnitude of the
observed spectrum.

In the context of hadronic degrees of freedom, the p̄p ! �� reaction can be described in terms of the meson and
baryon exchange diagrams. Recent theoretical calculations suggest that the N⇤(1535) exchange in the t-channel could
play a significant role and provide an important source for bypassing the OZI rule [13–15]. Additionally, a more recent
theoretical calculation, using an e↵ective Lagrangian approach, indicates that the inclusion of either f0 or f2 in the
s-channel can e↵ectively describe the bump structure near W ⇡ 2.2 GeV [? ]. These two previous work included only
the N⇤(1535) exchange.

This paper details a theoretical study of the near-threshold p̄p ! �� reactions using an e↵ective Lagrangian
approach. We examine the exchange of a ground state N and three N⇤ resonances with JP = 1/2� in the t- and
u-channels (N⇤(1650), N⇤(1895), and N⇤(1535) in order of coupling strength) as well as all f0 and f2 mesons in
the s-channel. Additionally, we include a pseudoscalar meson, ⌘(2225), in the s-channel. Our work in a coupled-
channel formalism reveals that the N⇤(1650) contributes significantly to the �N channel, indicating that the previous
work considering only the N⇤(1535) exchange may be insu�cient. We determine polarization observables by the ��
production amplitudes of di↵erent helicities for the final �� states. The squared absolute values of the production
amplitudes determine unpolarized cross-sections. Therefore, the polarization data provides new information relevant
to evaluating the resonance couplings. These observables extend our capabilities to validate the mechanisms of
the reaction models used in data analyses through a combined fit of unpolarized cross-sections and polarization
measurements. If further experiments confirm a large violation of the OZI rule, an amplitude analysis of spin-
dependent observables will be necessary, for which this paper lays the groundwork.

The paper is organized as follows: In Sec. II, we describe the reaction model for double � production in p̄p
reactions near the threshold. In Sec. III, we present the numerical calculation results for the total and di↵erential
cross sections. Section IV focuses on spin density matrix elements and spin correlations between two � mesons.
Finally, Sec. V summarizes our conclusions.

II. THEORETICAL FRAMEWORK

This section briefly introduces the theoretical framework for studying the reaction process pp̄ ! ��. The relevant
Feynman diagrams are provided in Fig. 1, along with the definition of the four momenta and polarization of the vector
meson. The e↵ective Lagrangians for the interaction of Yukawa vertices are defined as follows:

LSNN = gSNN N̄SN + h.c., LSV V =
gS��

m�
Fµ⌫F

µ⌫S

LPNN =
fPNN

MP
N̄�5(/@P )N, LPV V =

igPV V

MP
✏µ⌫⇢�F

µ⌫
V F ⇢�

V P,

LTNN = � igTNN

MN
N̄(�µ@⌫ + �⌫@µ)NTµ⌫ + h.c., LTV V =

gTV V

2MV

hgµ⌫
4

F⇢�F
⇢� � g�⇢F⌫⇢F�µ

i
Tµ⌫ ,

LV NN = �gV NN N̄�µ�5NV µ, LV NN 0 = � igV NN 0

MV
N̄

0µ�⌫(@µV⌫ � @⌫Vµ)�5�5N + h.c., (1)

, self gauge-invariantFμν = ∂μVν − ∂νVμ
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(corresponding to T = Tf0 + TN∗(1535)), with fixed cutoff
parameters !f0 and !N∗(1535), we perform a χ2 fit (fit I) to
the total cross section data for p̄p → φφ [5]. There are a total
of 20 data points.

By constraining the value of the cutoff parameter !f0

between 0.6 and 1.2 GeV and !N∗(1535) around 3.0 GeV based
on the results of Ref. [18], we obtain a minimal χ2/d.o.f. = 2.1
with !f0 = 0.6 GeV and !N∗(1535) = 3.05 GeV. The fit-
ted parameters are gf0p̄p gf0φφ = 0.45 ± 0.08, Mf0 = 2174 ±
3 MeV, and $f0 = 167 ± 27 MeV.

Second, instead of a scalar meson, we study the case
of a tensor meson f2 in the s channel and t- and u-
channel N∗(1535) resonance (corresponding to T = Tf2 +
TN∗(1535)), and we perform a second χ2 fit (fit II). In
this case, we get a minimal χ2/d.o.f. = 1.4 with !f2 =
0.65 GeV and !N∗(1535) = 3.05 GeV. The fitted parameters
are gf2p̄p gf2φφ = −0.12 ± 0.02, Mf2 = 2192 ± 4 MeV, and
$f2 = 177 ± 30 MeV.

Based on the value of the χ2/d.o.f., fit II is preferred to fit I.
It seems to indicate that the p̄p → φφ reaction is dominated by
the exchange of a strange tensor meson with quantum number
JPC = 2++ in the s-channel, in agreement with the study of
Ref. [5]. In addition, a partial-wave analysis of the π−p →
φφn reaction shows that the φφ system is dominant by two
JPC = 2++ states [9], one an S wave and the other a D wave.
The mass of the S-wave state is M = 2160 ± 50 MeV, with
a decay width $ = 310 ± 70 MeV. The mass is in agreement
with our fitted result for the tensor meson.

Next, we show the corresponding fitted results for the total
cross sections in Fig. 2, in comparison with the experimental
data from Ref. [5]. From Fig. 2, one can see that the
experimental total cross section can be described fairly well by
including the contributions from both the N∗(1535) resonance
and the scalar meson f0 or tensor meson f2. The contributions
from N∗(1535) resonance dominates above W = 2.25 GeV,
while the bump structure around W = 2.2 GeV can be well

FIG. 2. Total cross sections for the p̄p → φφ reaction. The
experimental data are taken from Ref. [5]. The curves are the
contributions from s-channel f0 and f2, t- and u-channel N∗(1535)
resonance, and the total results of fits I and II.

FIG. 3. Differential cross sections for p̄p → φφ reaction. The
curves are the contributions from s-channel scalar meson f0 (dash-
dotted) and tensor meson f2 (dotted), t- and u-channel N∗(1535)
resonance (dashed), and the total results of fit I (dash-dot-dotted) and
fit II (solid).

reproduced by considering the contributions from the strange
mesons f0 and f2.
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1, where - stands for any number of glueons and light @@ pairs. The upper limit for the total cross-section of the ?? ! qq
reaction is given by f(?? ! qq) = ( |I |/|G |)4 · f(?? ! ll) � 250 nb, which is larger than the value from the q-l mixing
effect, but still much smaller compared to the experimental data.

The interaction between quarks, induced by instantons, could potentially weaken the OZI suppression. A theoretical study [?
] demonstrates that the violation of the OZI rule in the ?? annihilation is a nontrivial consequence of the complex structure of
the QCD vacuum, which is associated with the existence of the instantons. On the other hand, the large cross-section for the
?? ! qq reaction may be explained by considering the hadronic rescattering mechanism. Each transition in the rescattering
diagram is OZI-allowed. Lu et al. studied the role of a   intermediate state in a triangle diagram in the ?? ! qq reaction [?
]. The intermediate [[ can also contribute to the qq production, as the [ contains BB content. In addition, the cc !   
amplitude could make a sizable contribution. It is worth noting that the kernel ⌫⌫ ! << involving a baryon and antibaryon pair
is possible. A full calculation involving all possible hadronic rescattering diagrams would be necessary to predict the detailed
shape and magnitude of the observed spectrum.

In the context of hadronic degrees of freedom, the ?? ! qq reaction can be described in terms of the meson and baryon
exchange diagrams. Recent theoretical calculations suggest that the #⇤ (1535) exchange in the C-channel could play a significant
role and provide an important source for bypassing the OZI rule [? ]. Additionally, a more recent theoretical calculation, using
an effective Lagrangian approach, indicates that the inclusion of either 50 or 52 in the B-channel can effectively describe the bump
structure near, ⇡ 2.2 GeV [? ]. These two previous work included only the #⇤ (1535) exchange.

This paper details a theoretical study of the near-threshold ?? ! qq reactions using an effective Lagrangian approach.
We examine the exchange of a ground state # and three #⇤ resonances with �% = 1/2� in the C- and D-channels (#⇤ (1650),
#⇤ (1895), and #⇤ (1535) in order of coupling strength) as well as all 50 and 52 mesons in the B-channel. Additionally, we include
a pseudoscalar meson, [(2225), in the B-channel. Our work in a coupled-channel formalism reveals that the #⇤ (1650) contributes
significantly to q# channel, indicating that the previous work considering only the #⇤ (1535) exchange may be insufficient. We
determine polarization observables by the qq production amplitudes of different helicities for the final qq states. The squared
absolute values of the production amplitudes determine unpolarized cross-sections. Therefore, the polarization data provides new
information relevant for evaluating the resonance couplings. These observables extend our capabilities to validate the mechanisms
of the reaction models used in data analyses through a combined fit of unpolarized cross-sections and polarization measurements.
If further experiments confirm a large violation of the OZI rule, an amplitude analysis of spin-dependent observables will be
necessary, for which this paper lays the groundwork.

The paper is organized as follows: In Sec. II, we describe the reaction model for double q production in ?? reactions near the
threshold. In Sec. III, we present the numerical calculation results for the total and differential cross sections. Section IV focuses
on spin density matrix elements and spin correlations between two q mesons. Finally, Sec. V summarizes our conclusions.

II. THEORETICAL FRAMEWORK

FIG. 1: The relevant Feynman diagrams illustrate the (B, C, D)-channel amplitudes for ? ?̄ ! qq. Solid lines represent
(anti)proton and its resonances in these diagrams, while dashed lines represent scalar and tensor mesons. The four momenta

(:8) and polarizations (n8) for the particles are also defined.

This section briefly introduces the theoretical framework for studying the reaction process ? ?̄ ! qq. The relevant Feynman
diagrams are provided in Fig. ??, along with the definition of the four momenta and polarization of the vector meson. The
effective Lagrangians for the interaction of Yukawa vertices are defined as follows:

L(## = 6(## #̄ ((, W5%)# + h.c.,
L(++ =

6(qq

<q
�`a�

`a ((, W5%)

L)## = �8 6)##

"#
#̄ (W`ma + Wam`)#) `a + h.c.,

f0(2020, 2100, 2200)

f2(1950, 2010, 2150), η(2225)
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1, where - stands for any number of glueons and light @@ pairs. The upper limit for the total cross-section of the ?? ! qq
reaction is given by f(?? ! qq) = ( |I |/|G |)4 · f(?? ! ll) � 250 nb, which is larger than the value from the q-l mixing
effect, but still much smaller compared to the experimental data.

The interaction between quarks, induced by instantons, could potentially weaken the OZI suppression. A theoretical study [?
] demonstrates that the violation of the OZI rule in the ?? annihilation is a nontrivial consequence of the complex structure of
the QCD vacuum, which is associated with the existence of the instantons. On the other hand, the large cross-section for the
?? ! qq reaction may be explained by considering the hadronic rescattering mechanism. Each transition in the rescattering
diagram is OZI-allowed. Lu et al. studied the role of a   intermediate state in a triangle diagram in the ?? ! qq reaction [?
]. The intermediate [[ can also contribute to the qq production, as the [ contains BB content. In addition, the cc !   
amplitude could make a sizable contribution. It is worth noting that the kernel ⌫⌫ ! << involving a baryon and antibaryon pair
is possible. A full calculation involving all possible hadronic rescattering diagrams would be necessary to predict the detailed
shape and magnitude of the observed spectrum.

In the context of hadronic degrees of freedom, the ?? ! qq reaction can be described in terms of the meson and baryon
exchange diagrams. Recent theoretical calculations suggest that the #⇤ (1535) exchange in the C-channel could play a significant
role and provide an important source for bypassing the OZI rule [? ]. Additionally, a more recent theoretical calculation, using
an effective Lagrangian approach, indicates that the inclusion of either 50 or 52 in the B-channel can effectively describe the bump
structure near, ⇡ 2.2 GeV [? ]. These two previous work included only the #⇤ (1535) exchange.

This paper details a theoretical study of the near-threshold ?? ! qq reactions using an effective Lagrangian approach.
We examine the exchange of a ground state # and three #⇤ resonances with �% = 1/2� in the C- and D-channels (#⇤ (1650),
#⇤ (1895), and #⇤ (1535) in order of coupling strength) as well as all 50 and 52 mesons in the B-channel. Additionally, we include
a pseudoscalar meson, [(2225), in the B-channel. Our work in a coupled-channel formalism reveals that the #⇤ (1650) contributes
significantly to q# channel, indicating that the previous work considering only the #⇤ (1535) exchange may be insufficient. We
determine polarization observables by the qq production amplitudes of different helicities for the final qq states. The squared
absolute values of the production amplitudes determine unpolarized cross-sections. Therefore, the polarization data provides new
information relevant for evaluating the resonance couplings. These observables extend our capabilities to validate the mechanisms
of the reaction models used in data analyses through a combined fit of unpolarized cross-sections and polarization measurements.
If further experiments confirm a large violation of the OZI rule, an amplitude analysis of spin-dependent observables will be
necessary, for which this paper lays the groundwork.

The paper is organized as follows: In Sec. II, we describe the reaction model for double q production in ?? reactions near the
threshold. In Sec. III, we present the numerical calculation results for the total and differential cross sections. Section IV focuses
on spin density matrix elements and spin correlations between two q mesons. Finally, Sec. V summarizes our conclusions.

II. THEORETICAL FRAMEWORK

FIG. 1: The relevant Feynman diagrams illustrate the (B, C, D)-channel amplitudes for ? ?̄ ! qq. Solid lines represent
(anti)proton and its resonances in these diagrams, while dashed lines represent scalar and tensor mesons. The four momenta

(:8) and polarizations (n8) for the particles are also defined.

This section briefly introduces the theoretical framework for studying the reaction process ? ?̄ ! qq. The relevant Feynman
diagrams are provided in Fig. ??, along with the definition of the four momenta and polarization of the vector meson. The
effective Lagrangians for the interaction of Yukawa vertices are defined as follows:
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1, where - stands for any number of glueons and light @@ pairs. The upper limit for the total cross-section of the ?? ! qq
reaction is given by f(?? ! qq) = ( |I |/|G |)4 · f(?? ! ll) � 250 nb, which is larger than the value from the q-l mixing
effect, but still much smaller compared to the experimental data.

The interaction between quarks, induced by instantons, could potentially weaken the OZI suppression. A theoretical study [?
] demonstrates that the violation of the OZI rule in the ?? annihilation is a nontrivial consequence of the complex structure of
the QCD vacuum, which is associated with the existence of the instantons. On the other hand, the large cross-section for the
?? ! qq reaction may be explained by considering the hadronic rescattering mechanism. Each transition in the rescattering
diagram is OZI-allowed. Lu et al. studied the role of a   intermediate state in a triangle diagram in the ?? ! qq reaction [?
]. The intermediate [[ can also contribute to the qq production, as the [ contains BB content. In addition, the cc !   
amplitude could make a sizable contribution. It is worth noting that the kernel ⌫⌫ ! << involving a baryon and antibaryon pair
is possible. A full calculation involving all possible hadronic rescattering diagrams would be necessary to predict the detailed
shape and magnitude of the observed spectrum.

In the context of hadronic degrees of freedom, the ?? ! qq reaction can be described in terms of the meson and baryon
exchange diagrams. Recent theoretical calculations suggest that the #⇤ (1535) exchange in the C-channel could play a significant
role and provide an important source for bypassing the OZI rule [? ]. Additionally, a more recent theoretical calculation, using
an effective Lagrangian approach, indicates that the inclusion of either 50 or 52 in the B-channel can effectively describe the bump
structure near, ⇡ 2.2 GeV [? ]. These two previous work included only the #⇤ (1535) exchange.

This paper details a theoretical study of the near-threshold ?? ! qq reactions using an effective Lagrangian approach.
We examine the exchange of a ground state # and three #⇤ resonances with �% = 1/2� in the C- and D-channels (#⇤ (1650),
#⇤ (1895), and #⇤ (1535) in order of coupling strength) as well as all 50 and 52 mesons in the B-channel. Additionally, we include
a pseudoscalar meson, [(2225), in the B-channel. Our work in a coupled-channel formalism reveals that the #⇤ (1650) contributes
significantly to q# channel, indicating that the previous work considering only the #⇤ (1535) exchange may be insufficient. We
determine polarization observables by the qq production amplitudes of different helicities for the final qq states. The squared
absolute values of the production amplitudes determine unpolarized cross-sections. Therefore, the polarization data provides new
information relevant for evaluating the resonance couplings. These observables extend our capabilities to validate the mechanisms
of the reaction models used in data analyses through a combined fit of unpolarized cross-sections and polarization measurements.
If further experiments confirm a large violation of the OZI rule, an amplitude analysis of spin-dependent observables will be
necessary, for which this paper lays the groundwork.

The paper is organized as follows: In Sec. II, we describe the reaction model for double q production in ?? reactions near the
threshold. In Sec. III, we present the numerical calculation results for the total and differential cross sections. Section IV focuses
on spin density matrix elements and spin correlations between two q mesons. Finally, Sec. V summarizes our conclusions.

II. THEORETICAL FRAMEWORK

FIG. 1: The relevant Feynman diagrams illustrate the (B, C, D)-channel amplitudes for ? ?̄ ! qq. Solid lines represent
(anti)proton and its resonances in these diagrams, while dashed lines represent scalar and tensor mesons. The four momenta

(:8) and polarizations (n8) for the particles are also defined.

This section briefly introduces the theoretical framework for studying the reaction process ? ?̄ ! qq. The relevant Feynman
diagrams are provided in Fig. ??, along with the definition of the four momenta and polarization of the vector meson. The
effective Lagrangians for the interaction of Yukawa vertices are defined as follows:
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• When considering the hidden-local symmetry for the  meson, it is essential to uphold the (extended) Ward-
Takahashi (WT) identity for the total amplitude.

ϕ

• Common form factor  is used to satisfy the WT identity in both the t and u channel amplitudes, 
resulting in  for .

FN
c (t, u)

iℳu
N,N* + iℳt

N,N* = 0 ϵ3,4 → k3,4

3

the self gauge-invariant Lagrangians for the (++ and )++
interaction vertices, given in Refs. [13, 14] in terms of the
hidden-local symmetry (HLS) for the massive vector meson
q. �5 denotes (14⇥4, W5) for the parity-(+,�) nucleon states.
For the # 0, we employed the Rarita-Schwinger formalism [23].

From a straightforward computation for the invariant ampli-
tudes using the interaction Lagrangians, we arrived at the total
amplitude, which is the sum of the following contributions as
depicted in Fig. 1:
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ā:2 [(:3 · :4) (n3 · n4) � (:3 · n4) (n3 · :4)] D
B � "2

( + 8�("(
⇥ �(

B ,

8MB
% =

286%++6%##

"+
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Here, @8± 9 ⌘ (:8 ± : 9 ) and the Mandelstam variables are
defined by (B, C, D) = @2

B,C ,D. We also define the rank-4 tensor
for the tensor-meson propagator as follows:
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To incorporate the spatial extension of the hadrons, which is
inversely proportional to a cutoff mass ⇤, and to ensure the
unitarity of the scattering process, it becomes necessary to
introduce phenomenological strong form factors to the ampli-
tudes. In the present work, we use the following parameteriza-
tion of the form factors, which satisfy the Lorentz invariance
as well as the crossing symmetry [15]:
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⇤4
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⌘)2
. (4)

In this equation, G represents the Mandelstam variables
(B, C, D), and ⌘ denotes the hadron species. The cutoff mass
⇤ will be determined by fitting available experimental data in
the later Section.

As previously discussed, when taking into account the
hidden-local symmetry for the q meson, the (extended) Ward-
Takahashi (WT) identity must be upheld for the total amplitude,
as shown below:
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In Eq. (2), if we replace n3,4 with :3,4, we can see that the
scalar-meson pole amplitude in the B channel, as indicated by
Eq. (2), satisfies the WT identity due to the self-gauge-invariant
nature of the interaction Lagrangian governing the (++ vertex.
Similarly, the B channel amplitude for the tensor meson, also
represented in Eq. (2), automatically upholds the WT identity.
Notably, we use a common form factor �#

2 (C, D) for both the
C- and D-channel amplitudes in Eq. (2) to maintain the WT
identity, resulting in 8MD

# ,# ⇤ ,# 0⇤ + 8MC
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:3,4. We use the following parameterization for the common
form factor, satisfying the on-shell condition explicitly:
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Thus, we verified that the WT identity is upheld for the total
amplitude as follows:
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`a :a4 = 0 as well.

In the ?-?̄ scattering, other ⌫-⌫̄ channels can open in the
off-mass shell and decay into two q mesons. Hence, in the
energy region from ⇢c.m. = ⇢threshold to 2.5 GeV that we are
interested in, a cusp corresponding to the⇤-⇤̄ channel opening
can appear at ⇢c.m. = 2"⇤. To describe the cusp effectively,
we consider the one-loop diagram as depicted in Fig. 2. For
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To incorporate the spatial extension of the hadrons, which is
inversely proportional to a cutoff mass ⇤, and to ensure the
unitarity of the scattering process, it becomes necessary to
introduce phenomenological strong form factors to the ampli-
tudes. In the present work, we use the following parameteriza-
tion of the form factors, which satisfy the Lorentz invariance
as well as the crossing symmetry [15]:
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In this equation, G represents the Mandelstam variables
(B, C, D), and ⌘ denotes the hadron species. The cutoff mass
⇤ will be determined by fitting available experimental data in
the later Section.

As previously discussed, when taking into account the
hidden-local symmetry for the q meson, the (extended) Ward-
Takahashi (WT) identity must be upheld for the total amplitude,
as shown below:
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In Eq. (2), if we replace n3,4 with :3,4, we can see that the
scalar-meson pole amplitude in the B channel, as indicated by
Eq. (2), satisfies the WT identity due to the self-gauge-invariant
nature of the interaction Lagrangian governing the (++ vertex.
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In Eq. (2), if we replace n3,4 with :3,4, we can see that the scalar-meson pole amplitude in the B channel, as indicated by Eq. (2),
satisfies the WT identity due to the self-gauge-invariant nature of the interaction Lagrangian governing the (++ vertex. Similarly,
the B channel amplitude for the tensor meson, also represented in Eq. (2), automatically upholds the WT identity. Notably, we
use a common form factor �#

2 (C, D) for both the C- and D-channel amplitudes in Eq. (2) to maintain the WT identity, resulting in
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FIG. 2: A loop contribution for ⇤-⇤̄ channel opening.

In the ?-?̄ scattering, other ⌫-⌫̄ channels can open in the off-mass shell and decay into two q mesons. Hence, in the energy
region from ⇢c.m. = ⇢threshold to 2.5 GeV that we are interested in, a cusp corresponding to the ⇤-⇤̄ channel opening can appear
at ⇢c.m. = 2"⇤. To describe the cusp effectively, we consider the one-loop diagram as depicted in Fig. ??. For those Yukawa
interaction vertices shown in the figure, we define the following point-interaction Lagrangians to simplify the problem:
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The unknown couplings 64⌫ and 6+⌫+⌫ will be taken as free parameters here. Straightforwardly, the amplitude for the loop
diagram can be computed as follows:
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where the reduced coupling reads 6⇤⇤̄ ⌘ 64⌫6+⌫+⌫/"5
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(WT) identity by construction. The integral representing the ⇤⇤̄ loop, with cutoff regularization, is given by:
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baryon masses ` ⇡ 2"⇤. To prevent the unphysical increase of 8M⇤⇤̄ caused by the terms involving :3,4, we multiply by
�loop = � (B,"# ,⇤loop).

3

This section briefly introduces the theoretical framework for studying the reaction process pp̄ ! ��. The relevant
Feynman diagrams are provided in Fig. 1, along with the definition of the four momenta and polarization of the vector
meson. The e↵ective Lagrangians for the interaction of Yukawa vertices are defined as follows:
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where S, P , V , T , and (N,N 0) denote the scalar, pseudoscalar, vector, tensor, and nucleon fields for JP =
(1/2±, 3/2±), respectively, while the vector meson is given in the form of the field strength tensor Fµ⌫ = @µV⌫ �@⌫Vµ.
Note that we employ the self gauge-invariant Lagrangians for the SV V and TV V interaction vertices, given in
Refs. [15, 16] in terms of the hidden-local symmetry (HLS) for the massive vector meson �. �5 denotes (14⇥4, �5) for
the parity-(+,�) nucleon states. For the N 0, we employed the Rarita-Schwinger formalism [17]. By straightforwardly
computing the invariant amplitudes using the interaction Lagrangians, we obtained the total amplitude, which is the
sum of the following contributions illustrated in Fig. 2:
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Here, qi±j ⌘ (ki ± kj) and the Mandelstam variables are defined by (s, t, u) = q2s,t,u. We also define the rank-4 tensor
for the tensor-meson propagator as follows:
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To incorporate the spatial extension of the hadrons, which is inversely proportional to a cuto↵ mass ⇤, and to ensure
the unitarity of the scattering process, it becomes necessary to introduce phenomenological strong form factors to
the amplitudes. In the present work, we use the following parameterization of the form factors, which satisfy Lorentz
invariance as well as the crossing symmetry [18]:
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Here, x represents the Mandelstam variables (s, t, u), and h denotes the hadron species. Fitting available experimental
data will determine the cuto↵ mass ⇤ later in Section III.

As previously discussed, when considering the hidden-local symmetry for the � meson, it is essential to uphold the
(extended) Ward-Takahashi (WT) identity for the total amplitude, as shown below:
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In Eq. (2), if we replace ✏3,4 with k3,4, we can see that the scalar-meson pole amplitude in the s channel, as indicated
by Eq. (2), satisfies the WT identity due to the self-gauge-invariant nature of the interaction Lagrangian governing

3

This section briefly introduces the theoretical framework for studying the reaction process pp̄ ! ��. The relevant
Feynman diagrams are provided in Fig. 1, along with the definition of the four momenta and polarization of the vector
meson. The e↵ective Lagrangians for the interaction of Yukawa vertices are defined as follows:

LSNN = gSNN N̄SN + h.c., LSV V =
gS��

m�
Fµ⌫F

µ⌫S

LPNN =
fPNN

MP
N̄�5(/@P )N, LPV V =

igPV V

MP
✏µ⌫⇢�F

µ⌫
V F ⇢�

V P,

LTNN = � igTNN

MN
N̄(�µ@⌫ + �⌫@µ)NTµ⌫ + h.c., LTV V =

gTV V

2MV

hgµ⌫
4

F⇢�F
⇢� � g�⇢F⌫⇢F�µ

i
Tµ⌫ ,

LV NN = �gV NN N̄�µ�5NV µ, LV NN 0 = � igV NN 0

MV
N̄

0µ�⌫(@µV⌫ � @⌫Vµ)�5�5N + h.c., (1)

where S, P , V , T , and (N,N 0) denote the scalar, pseudoscalar, vector, tensor, and nucleon fields for JP =
(1/2±, 3/2±), respectively, while the vector meson is given in the form of the field strength tensor Fµ⌫ = @µV⌫ �@⌫Vµ.
Note that we employ the self gauge-invariant Lagrangians for the SV V and TV V interaction vertices, given in
Refs. [15, 16] in terms of the hidden-local symmetry (HLS) for the massive vector meson �. �5 denotes (14⇥4, �5) for
the parity-(+,�) nucleon states. For the N 0, we employed the Rarita-Schwinger formalism [17]. By straightforwardly
computing the invariant amplitudes using the interaction Lagrangians, we obtained the total amplitude, which is the
sum of the following contributions illustrated in Fig. 2:

iMs
S = �2igSV V gSNN

MV

⌫̄k2 [(k3 · k4)(✏3 · ✏4)� (k3 · ✏4)(✏3 · k4)]u
s�M2

S + i�SMS
⇥ FS

s ,

iMs
P =

igPV V fPNN

M2
P

⌫̄✏µ⌫⇢�k3µk4⌫✏3↵✏4��5/qsu

s�M2
P + iMP�P

⇥ FP
s ,

iMs
T =

igTV V gTNN

2MV MN
⌫̄
hgµ⌫

2
[(k3 · k4)(✏3 · ✏4)� (k3 · ✏4)(✏3 · k4)]� g�⇢(k3⌫✏3⇢ � k3⇢✏3⌫)(k4�✏4µ � k4µ✏4�)

i

⇥

Gµ⌫↵� (�↵k1� + ��k1↵)

s�M2
T + i�TMT

�
u⇥ FT

s ,

iMt
N(⇤) = �ig2V NN(⇤) ⌫̄k2�5


/✏4 �

V NN(⇤)

2MN
�µ⌫✏

µ
4k

⌫
4

� 
/qt +MN⇤

t�M2
N⇤

� 
/✏3 �

V NN(⇤)

2MN
�⇢�✏

⇢
3k

�
3

�
�5u⇥ FN(⇤)

c ,

iMu
N(⇤) = iMt

N(⇤) |k3$k4,t!u.

iMt
N 0⇤ = �g2V NN 0⇤

M2
V

⌫̄�5�5(k4µ✏4⌫ � k4⌫✏4µ)�
⌫


gµ↵ � 1

3
�µ�↵ � 2

3M2
N 0⇤

qµt q
↵
t +

qµt �
↵ + q↵�µ

3MN 0⇤

�
,

⇥ (k3↵✏̄3 � k̄3✏3↵)�5�5u⇥ FN 0⇤

c ,
iMu

N 0⇤ = iMt
N 0⇤ |k3$k4,t!u. (2)

Here, qi±j ⌘ (ki ± kj) and the Mandelstam variables are defined by (s, t, u) = q2s,t,u. We also define the rank-4 tensor
for the tensor-meson propagator as follows:

Gµ⌫↵�(s) =
1

2
(ḡµ↵ḡ⌫� + ḡµ� ḡ⌫↵)� 1

3
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those Yukawa interaction vertices shown in the figure, we
define the following point-interaction Lagrangians to simplify
the problem:
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The unknown couplings 64⌫ and 6+⌫+⌫ will be taken as free
parameters here. Straightforwardly, the amplitude for the loop
diagram can be computed as follows:
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where the reduced coupling reads 6⇤⇤̄ ⌘ 64⌫6+⌫+⌫/"5
# . We

observe that the amplitude above satisfies the Ward-Takahashi
(WT) identity by construction. The integral representing the
⇤⇤̄ loop, with cutoff regularization, is given by:
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where G indicates the Feynman-parameterization variable and
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Here, � = �G(1�G)B+"2
⇤ and �` = �G(1�G)B+`2, in which

` stands for a cutoff mass, corresponding to the size of two
baryon masses ` ⇡ 2"⇤. To prevent the unphysical increase
of 8M⇤⇤̄ caused by the terms involving :3,4, we multiply by
�loop = � (B,"# ,⇤loop).

In interpreting the reaction mechanism of the reaction pro-
cess, the spin-density matrix element (SDME) is one of the
useful observables. For the current reaction process, there
are nine independent SDMEs, considering the two q-meson
helicities, defined similarly in the previous study [24]. The
0-th element of the SDME for the q-meson with :3 (q3) is as
follows:
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In this context, _⌘ represents the helicity of particle ⌘ in a
specific kinematic frame. We can obtain the SDMEs for the q-
meson with :4 (q4) by simply swapping the subscript indices
as 3 $ 4 in Eq. (12). To compare the SDMEs with exper-
imental data, we need to boost the kinematic frame used for
the theoretical computation to the q-meson rest frame. This
involves using different spin-quantization axes, such as the he-
licity, Adair, and Gottfried-Jackson (GJ) frames, as defined in
Ref. [24], by a Wick rotation of the reaction from (W, q) to
(q8 , q 9 ).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results along with
their corresponding discussions. First, we consider the rele-
vant mesons for the B-channel contributions in the current reac-
tion process. For the scalar and tensor mesons near the thresh-
old, we select 50 (2020, 2100, 2200) and 52 (1950, 2010, 2150),
respectively. According to the experimental data [27], the
pseudoscalar meson [(2225) is strongly coupled to qq, so we
include this meson in our calculations.

All the relevant numerical inputs for the mesons are listed
in Table I. Here, we show the minimized number of combined
coupling constants 6� = 6�qq6�## for � = ((, %,)), con-
sidering the limited experimental and theoretical information
available to determine each coupling. This approach allows us
to fit the data effectively. In contrast, Ref. [? ] provides the
couplings for the [ as 6[ (qq,## ) = (�4.062, 0.5).

Now, we are in a position to discuss the nucleon resonance
contributions in the C and D channels of our numerical calcu-
lations. As highlighted by Ref. [17], the strangeness content
within nucleons is crucial for reproducing data, such as the
#⇤ (1535, 1/2�). According to Ref. [21], using the coupled-
channel method within the framework of chiral dynamics,
specifically, the chiral unitary model (ChUM), three B-wave
nucleon resonances are strongly coupled to the q-# channel:
#⇤ (1535, 1/2�), #⇤ (1650, 1/2�), and #⇤ (1895, 1/2�). The
resulting couplings, denoted as 6q## ⇤ , are listed in Table II.

Additionally, as discussed in our previous work [25], a pos-
sible pentaquark baryon, %B (2071, 3/2�), is considered as a
 ⇤⌃ bound state that decays to q# . Its coupling is also com-
puted via ChUM [26] and is listed in the table. Note that we
set the values of the tensor-interaction strength ^# ⇤ to zero
due to limited information, except for ^q## , which is set to
�1.65 [28]. For simplicity in computations, we use a single
cutoff ⇤⌘ = 550 MeV for all the hadronic form factors and
⇤loop = 300 MeV with 6⇤⇤̄ = 2 to reproduce the data.

The numerical results for the total cross-section of the cur-
rent reaction process are presented in panel (a) of Fig. 3, which
also illustrates the individual contributions. Notably, the ex-
perimental data [? ] are qualitatively well-reproduced. While
the contributions from [ and %B are almost negligible, the 50
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the SV V vertex. Similarly, the s channel amplitude for the tensor meson, also represented in Eq. (2), automatically
upholds the WT identity. Notably, we use a common form factor FN

c (t, u) for both the t- and u-channel amplitudes in
Eq. (2) to maintain the WT identity, resulting in iMu

N,N⇤,N 0⇤ + iMt
N,N⇤,N 0⇤ = 0 for ✏3,4 ! k3,4. We use the following

parameterization for the common form factor, explicitly satisfying the on-shell condition:

FN,N⇤,N 0⇤

c = 1�
⇣
1� FN,N⇤,N 0⇤

t
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1� FN,N⇤,N 0⇤

u
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. (6)

Thus, we verified that the WT identity is upheld for the total amplitude as follows:
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and iMtotal
µ⌫ k⌫4 = 0 as well.

FIG. 2: A loop contribution for ⇤̄⇤ channel opening.

In p̄p scattering, other B̄B channels can open an o↵-mass shell and decay into two � mesons. Hence, in the energy
region from W = Ethreshold to 2.5 GeV, a cusp corresponding to the ⇤̄⇤ channel opening can appear at W = 2M⇤.
To describe the cusp e↵ectively, we consider the one-loop diagram as depicted in Fig. 2. For those Yukawa interaction
vertices shown in Fig. 2., we define the following point-interaction Lagrangians to simplify the problem:
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The unknown couplings g4B and gV BV B will be taken as free parameters here. Straightforwardly, the amplitude for
the loop diagram can be computed as follows:
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N . The amplitude above satisfies the Ward-Takahashi (WT)
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size of two baryon masses µ ⇡ 2M⇤. To prevent the unphysical increase of iM⇤̄⇤ caused by the terms involving k3,4,
we multiply by Floop = F (s,MN ,⇤loop).

In interpreting the reaction mechanism of the reaction process, the spin-density matrix element (SDME) is one
of the useful observables. For the current reaction process, there are nine independent SDMEs, considering the two
�-meson helicities, defined similarly in the previous study [19]. The 0-th element of the SDME for the �-meson with
k3 (�3) is as follows:

⇢0��3�
0
�3

=
1

2NT

X

�p̄

X

�p

X

��4=±1

M�p̄�p��3��4
M⇤

�p̄�p�0
�3

��4
, NT =

1

2

X

�p̄

X

�p

X

��3

X

��4=±1

|M�p̄�p��3��4
|2,

4
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In interpreting the reaction mechanism of the reaction process, the spin-density matrix element (SDME) is one of the useful
observables. For the current reaction process, there are nine independent SDMEs, considering the two q-meson helicities,
defined similarly in the previous study [24]. The 0-th element of the SDME for the q-meson with :3 (q3) is as follows:
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In this context, _⌘ represents the helicity of particle ⌘ in a specific kinematic frame. We can obtain the SDMEs for the q-meson
with :4 (q4) by simply swapping the subscript indices as 3 $ 4 in Eq. (12). To compare the SDMEs with experimental data, we
need to boost the kinematic frame used for the theoretical computation to the q-meson rest frame. This involves using different
spin-quantization axes, such as the helicity, Adair, and Gottfried-Jackson (GJ) frames, as defined in Ref. [24], by a Wick rotation
of the reaction from (W, q) to (q8 , q 9 ).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results along with their corresponding discussions. First, we consider the relevant
mesons for the B-channel contributions in the current reaction process. For the scalar and tensor mesons near the threshold, we
select 50 (2020, 2100, 2200) and 52 (1950, 2010, 2150), respectively. According to the experimental data [27], the pseudoscalar
meson [(2225) is strongly coupled to qq, so we include this meson in our calculations.

All the relevant numerical inputs for the mesons are listed in Table I. Here, we show the minimized number of combined
coupling constants 6� = 6�qq6�## for� = ((, %,)), considering the limited experimental and theoretical information available
to determine each coupling. This approach allows us to fit the data effectively. In contrast, Ref. [? ] provides the couplings for
the [ as 6[ (qq,## ) = (�4.062, 0.5).

50 (2020) 50 (2100) 50 (2200) 52 (1950) 52 (2010) 52 (2150)
" � 8�/2 [MeV] 1982 � 8218 2095 � 8143.5 2187 � 8103.5 1936 � 8232 2011 � 8101 2157 � 876
6((,%,) ) [MeV] 0.115 �0.1

TABLE I: Relevant meson coupling constants for the B-channel contributions.

Now, we are in a position to discuss the nucleon resonance contributions in the C and D channels of our numerical calculations.
As highlighted by Ref. [17], the strangeness content within nucleons is crucial for reproducing data, such as the #⇤ (1535, 1/2�).
According to Ref. [21], using the coupled-channel method within the framework of chiral dynamics, specifically, the chiral unitary
model (ChUM), three B-wave nucleon resonances are strongly coupled to the q-# channel: #⇤ (1535, 1/2�), #⇤ (1650, 1/2�),
and #⇤ (1895, 1/2�). The resulting couplings, denoted as 6q## ⇤ , are listed in Table II.

Additionally, as discussed in our previous work [25], a possible pentaquark baryon, %B (2071, 3/2�), is considered as a  ⇤⌃
bound state that decays to q# . Its coupling is also computed via ChUM [26] and is listed in the table. Note that we set the
values of the tensor-interaction strength ^# ⇤ to zero due to limited information, except for ^q## , which is set to �1.65 [28]. For
simplicity in computations, we use a single cutoff ⇤⌘ = 550 MeV for all the hadronic form factors and ⇤loop = 300 MeV with
6⇤⇤̄ = 2 to reproduce the data.

# #⇤ (1535, 1/2�) #⇤ (1650, 1/2�) #⇤ (1895, 1/2�) %B (2071, 3/2�)
" � 8�/2 [MeV] 938 � 80 1504 � 855 1668 � 828 1673 � 867 1801 � 896 1912 � 854 2071 � 87

6q## (⇤) �1.47 1.4 + 82.2 4.1 � 82.7 4.5 + 85.2 2.1 + 81.8 0.9 � 80.2 0.14 + 80.2

TABLE II: Relevant nucleon coupling constants for the C- and D-channel contributions [21, 26].

In panel (a) of Fig. 3, we present the full calculations for the total cross-sectionsf ⌘ f? ?̄!qq as functions of the center-of-mass
energy, , showing each contribution separately. The experimental data are taken from Ref. [? ]. The ground-state nucleon (#)
contribution provides significant effects near the threshold, showing a shoulder-like structure, whereas the nucleon-resonance
(#⇤) one gets stronger as, increases. The scalar and tensor mesons 50,2 are responsible for the bump structure around, ⇡ 2.2
GeV as expected. In addition, there is a small but finite contribution from the [ in the B channel. Interestingly, the nontrivial
structure around , = 2.25 is well reproduced by the interference between the cusp effect from the ⇤⇤-loop contribution and
others. To see this observation more clearly, in panel (b), we show the total cross-section with and without the cusp effect. We
also test the effect from the [ contribution at , ⇡ 2.25 GeV, which does not explain the nontrivial structure. Being similar
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for the s and u channels, respectively. qt,s,u are the four momenta of the exchanged particles, i.e., qt = k2 − k1, qs = k1 + p1,
and qu = p2 − k1.

The invariant amplitudes for exchanges of spin-1/2 and -5/2 resonances are computed as
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, (A9)

for the s-channel diagram. The propagator of a spin-5/2 baryon field is represented as [72]

(β2β1;α2α1 (q) = q/ + MN∗

s − M2
N∗ + i"N∗MN∗

[
1
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(
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, (A10)

with

ḡαβ = gαβ − qαqβ

M2
N∗

, γ̄α = γα − qα

M2
N∗

q/. (A11)

APPENDIX B: SPIN-DENSITY MATRIX ELEMENTS

The spin-density matrix elements (SDMEs) can be ex-
pressed in terms of the helicity amplitudes [60]:

ρ0
λλ′ = 1

N

∑

λγ ,λi,λ f

Mλ f λ;λiλγ
M∗

λ f λ′;λiλγ
,

ρ1
λλ′ = 1

N

∑

λγ ,λi,λ f

Mλ f λ;λi−λγ
M∗

λ f λ′;λiλγ
,

(B1)

ρ2
λλ′ = i

N

∑

λγ ,λi,λ f

λγMλ f λ;λi−λγ
M∗

λ f λ′;λiλγ
,

ρ3
λλ′ = 1

N

∑

λγ ,λi,λ f

λγMλ f λ;λiλγ
M∗

λ f λ′;λiλγ
,

where the normalization factor N is defined as
N =

∑
|Mλ f λ;λiλγ

|2. (B2)

The helicity states for the incoming photon and nucleon
and the outgoing nucleon are denoted by λγ , λi, and λ f ,
respectively, whereas λ and λ′ stand for those for the outgoing
φ meson. By the symmetry property, the helicity amplitudes
have

M−λ f −λ;−λi−λγ
= (−1)(λ−λ f )−(λγ −λi )Mλ f λ;λiλγ

. (B3)

We have the following relations:

ρα
λλ′ = (−1)λ−λ′

ρα
−λ−λ′ for α = 0, 1,

ρα
λλ′ = −(−1)λ−λ′

ρα
−λ−λ′ for α = 2, 3. (B4)

There is an ambiguity in choosing the quantization axis
when computing the SDMEs because they are not Lorentz-
invariant quantities. Thus the spin-quantization direction for

the φ meson must be determined. We choose the Adair (A)
frame, the helicity (H) frame, and the Gottfried-Jackson (GJ)
frame. Figures 12(a) and 12(b) are schematic diagrams in the
c.m. frame and in the φ-meson rest frame, respectively. In the
Adair frame, the z axis is parallel to the incoming photon mo-
mentum in the c.m. frame. The helicity and Gottfried-Jackson
frames are when z axis is antiparallel to the momentum of
the outgoing nucleon or is chosen to be parallel to that of the
incoming photon, respectively. The former and latter ones are
in favor of the s-channel and t-channel helicity conservations,
respectively. When the SDMEs are given in one frame, it is
straightforward to derive them in other frames by a Wigner
rotation. The rotation angles are expressed as [10,60]

αA→H = θc.m., αH→GJ = − cos−1
(

v − cos θc.m.

v cos θc.m. − 1

)
,

αA→GJ = αA→H + αH→GJ, (B5)

where v is the velocity of the K meson in the φ-meson rest
frame (for the φ → KK̄ decay).

FIG. 12. Schematic diagrams for γ p → φp in (a) the center-
of-mass (c.m.) frame and (b) the φ-meson rest frame. A (green),
H (blue), and GJ (red) stand for the Adair, helicity and Gottfried-
Jackson frames, respectively.
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frame. Once the y and the z axes have been fixed, x̂ = ŷ × ẑ.
Let π̂ be the direction of the daughter K (for φ → KK) in the
chosen reference frame. Then the angles ζ and ϕ in Eq. (38)
are given as [59]

cos ζ = π̂ · ẑ, cos ϕ = ŷ · (ẑ × π̂ )
|ẑ × π̂ |

, sin ϕ = − x̂ · (ẑ × π̂ )
|ẑ × π̂ |

.

(39)

In the Rose convention of the signs (this is followed by
Schilling in Ref. [59]), the Wigner rotation matrix for a spin-1
system by an angle α is

d1(α) =

⎛

⎜⎜⎝

1
2 (1 + cos α) − 1√

2
sin α 1

2 (1 − cos α)
1√
2

sin α cos α − 1√
2

sin α

1
2 (1 − cos α) 1√

2
sin α 1

2 (1 + cos α)

⎞

⎟⎟⎠ .

(40)

To rotate the density matrix from reference frame A to B, the
transformation is

ρB = d1(−αA→B)ρAd1(αA→B). (41)

The rotation angles (counter-clockwise is positive) are given
by [59]

αAd→Hel = θφ
c.m., (42a)

αHel→GJ = − cos−1
(

β − cos θ
φ
c.m.

β cos θ
φ
c.m. − 1

)
, (42b)

αAd→GJ = αAd→Hel + αHel→GJ , (42c)

where β = |p⃗K |/EK is the velocity of the daughter kaon in
the φ rest frame (for the φ → KK decay).

B. “PWA” method and “Schilling’s” method of SDME
extraction in the Adair frame

The expansion of the production amplitudes using partial
wave analysis (PWA) techniques in Sec. VII allows for an
elegant way of extracting the SDME’s. For this, we follow
Schilling [59] and express the SDME’s in terms of the
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In this context, �h represents the helicity of particle h in a specific kinematic frame. We can obtain the SDMEs for
the �-meson with k4 (�4) by simply swapping the subscript indices as 3 $ 4 in Eq. (??). To compare the SDMEs
with experimental data, we need to boost the kinematic frame used for the theoretical computation to the �-meson
rest frame. This involves using di↵erent spin-quantization axes, such as the helicity, Adair, and Gottfried-Jackson
(GJ) frames, as defined in Ref. [? ], by a Wick rotation of the reaction from (�,�) to (�i,�j).

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results along with their corresponding discussions. We examine the
relevant mesons contributing to the s-channel in the current reaction process. For the scalar and tensor mesons near
the threshold, we select f0(2020, 2100, 2200) and f2(1950, 2010, 2150), respectively. Based on experimental data from
the Particle Data Group (2022) [? ], the pseudoscalar meson ⌘(2225) is known to be strongly coupled to ��, so we
include this meson in our calculations.

All the relevant numerical inputs for the mesons are listed in Table ??. Here, we show the minimized number of
combined coupling constants g� = g���g�NN for � = (S, P, T ). This approach considers the limited experimental
and theoretical information available for determining each coupling, allowing us to fit the data e↵ectively. In contrast,
Ref. [? ] provides the couplings for the ⌘ meson as g⌘(��,NN) = (�4.062, 0.5).

f0(2020) f0(2100) f0(2200) f2(1950) f2(2010) f2(2150)

M � i�/2 [MeV] 1982� i218 2095� i143.5 2187� i103.5 1936� i232 2011� i101 2157� i76

g(S,P,T ) [MeV] 0.115 �0.1

TABLE I: Relevant meson coupling constants for the s-channel contributions.

Now, we are in a position to discuss the contributions of nucleon resonances in the t and u channels of our numerical
calculations. Xie et al. [? ] highlighted the importance of the strangeness content within nucleons for reproducing
data, such as the N⇤(1535, 1/2�). Another study by Khemchandani et al. [? ] used the coupled-channel method
within the framework of chiral dynamics, specifically the chiral unitary model (ChUM), to demonstrate strong coupling
of three s-wave nucleon resonances to the �-N channel: N⇤(1535, 1/2�), N⇤(1650, 1/2�), and N⇤(1895, 1/2�). The
resulting couplings, denoted as g�NN⇤ , are listed in Table ??.

Furthermore, as discussed in our previous work [? ], a possible pentaquark baryon, Ps(2071, 3/2�), is considered as
a K⇤⌃ bound state that decays into �N . Its coupling has been calculated using ChUM [? ] and is presented in the
table. Note that we set the values of the tensor-interaction strength N⇤ to zero due to limited information, except
for �NN , which is fixed at �1.65 [? ]. For simplicity in the computations, we use a single cuto↵ ⇤h = 550 MeV for
all hadronic form factors and ⇤loop = 300 MeV with g⇤⇤̄ = 2 to reproduce the data.

N N⇤(1535, 1/2�) N⇤(1650, 1/2�) N⇤(1895, 1/2�) Ps(2071, 3/2
�)

M � i�/2 [MeV] 938� i0 1504� i55 1668� i28 1673� i67 1801� i96 1912� i54 2071� i7

g�NN(⇤) �1.47 1.4 + i2.2 4.1� i2.7 4.5 + i5.2 2.1 + i1.8 0.9� i0.2 0.14 + i0.2

TABLE II: Relevant nucleon coupling constants for the t- and u-channel contributions [? ? ].

In panel (a) of Fig. ??, we present the full calculations for the total cross-sections � ⌘ �pp̄!�� as functions of the
center-of-mass energy W , showing each contribution separately. The experimental data are taken from Ref. [? ? ? ].
The ground-state nucleon (N) contribution is significant near the threshold, exhibiting a shoulder-like structure, while
the nucleon-resonance (N⇤) contribution becomes stronger as W increases. As expected, the scalar and tensor mesons
f0,2 are responsible for the bump structure around W ⇡ 2.2 GeV. Additionally, there is a small but finite contribution
from the ⌘ in the s channel. Interestingly, the nontrivial structure around W = 2.25 GeV is well reproduced by the
interference between the cusp e↵ect from the ⇤⇤̄-loop contribution and other components. To clarify this observation,
in panel (b), we show the total cross-section with and without the cusp e↵ect. We also test the impact of the ⌘
contribution at W ⇡ 2.25 GeV, which fails to explain the nontrivial structure.

Following a similar approach to Refs. [? ? ? ], in panel (c), we attempt to reproduce the data without the ground-
state nucleon contribution by modifying the cuto↵ masses for the form factors, resulting in a fit-compatible with the
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with experimental data, we need to boost the kinematic frame used for the theoretical computation to the �-meson
rest frame. This involves using di↵erent spin-quantization axes, such as the helicity, Adair, and Gottfried-Jackson
(GJ) frames, as defined in Ref. [? ], by a Wick rotation of the reaction from (�,�) to (�i,�j).
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In this section, we present the numerical results along with their corresponding discussions. We examine the
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the threshold, we select f0(2020, 2100, 2200) and f2(1950, 2010, 2150), respectively. Based on experimental data from
the Particle Data Group (2022) [? ], the pseudoscalar meson ⌘(2225) is known to be strongly coupled to ��, so we
include this meson in our calculations.

All the relevant numerical inputs for the mesons are listed in Table ??. Here, we show the minimized number of
combined coupling constants g� = g���g�NN for � = (S, P, T ). This approach considers the limited experimental
and theoretical information available for determining each coupling, allowing us to fit the data e↵ectively. In contrast,
Ref. [? ] provides the couplings for the ⌘ meson as g⌘(��,NN) = (�4.062, 0.5).
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Now, we are in a position to discuss the contributions of nucleon resonances in the t and u channels of our numerical
calculations. Xie et al. [? ] highlighted the importance of the strangeness content within nucleons for reproducing
data, such as the N⇤(1535, 1/2�). Another study by Khemchandani et al. [? ] used the coupled-channel method
within the framework of chiral dynamics, specifically the chiral unitary model (ChUM), to demonstrate strong coupling
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resulting couplings, denoted as g�NN⇤ , are listed in Table ??.

Furthermore, as discussed in our previous work [? ], a possible pentaquark baryon, Ps(2071, 3/2�), is considered as
a K⇤⌃ bound state that decays into �N . Its coupling has been calculated using ChUM [? ] and is presented in the
table. Note that we set the values of the tensor-interaction strength N⇤ to zero due to limited information, except
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In panel (a) of Fig. ??, we present the full calculations for the total cross-sections � ⌘ �pp̄!�� as functions of the
center-of-mass energy W , showing each contribution separately. The experimental data are taken from Ref. [? ? ? ].
The ground-state nucleon (N) contribution is significant near the threshold, exhibiting a shoulder-like structure, while
the nucleon-resonance (N⇤) contribution becomes stronger as W increases. As expected, the scalar and tensor mesons
f0,2 are responsible for the bump structure around W ⇡ 2.2 GeV. Additionally, there is a small but finite contribution
from the ⌘ in the s channel. Interestingly, the nontrivial structure around W = 2.25 GeV is well reproduced by the
interference between the cusp e↵ect from the ⇤⇤̄-loop contribution and other components. To clarify this observation,
in panel (b), we show the total cross-section with and without the cusp e↵ect. We also test the impact of the ⌘
contribution at W ⇡ 2.25 GeV, which fails to explain the nontrivial structure.

Following a similar approach to Refs. [? ? ? ], in panel (c), we attempt to reproduce the data without the ground-
state nucleon contribution by modifying the cuto↵ masses for the form factors, resulting in a fit-compatible with the
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include this meson in our calculations.

All the relevant numerical inputs for the mesons are listed in Table ??. Here, we show the minimized number of
combined coupling constants g� = g���g�NN for � = (S, P, T ). This approach considers the limited experimental
and theoretical information available for determining each coupling, allowing us to fit the data e↵ectively. In contrast,
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and theoretical information available for determining each coupling, allowing us to fit the data e↵ectively. In contrast,
Ref. [? ] provides the couplings for the ⌘ meson as g⌘(��,NN) = (�4.062, 0.5).

f0(2020) f0(2100) f0(2200) f2(1950) f2(2010) f2(2150)

M � i�/2 [MeV] 1982� i218 2095� i143.5 2187� i103.5 1936� i232 2011� i101 2157� i76

g(S,P,T ) [MeV] 0.115 �0.1

TABLE I: Relevant meson coupling constants for the s-channel contributions.

Now, we are in a position to discuss the contributions of nucleon resonances in the t and u channels of our numerical
calculations. Xie et al. [? ] highlighted the importance of the strangeness content within nucleons for reproducing
data, such as the N⇤(1535, 1/2�). Another study by Khemchandani et al. [? ] used the coupled-channel method
within the framework of chiral dynamics, specifically the chiral unitary model (ChUM), to demonstrate strong coupling
of three s-wave nucleon resonances to the �-N channel: N⇤(1535, 1/2�), N⇤(1650, 1/2�), and N⇤(1895, 1/2�). The
resulting couplings, denoted as g�NN⇤ , are listed in Table ??.

Furthermore, as discussed in our previous work [? ], a possible pentaquark baryon, Ps(2071, 3/2�), is considered as
a K⇤⌃ bound state that decays into �N . Its coupling has been calculated using ChUM [? ] and is presented in the
table. Note that we set the values of the tensor-interaction strength N⇤ to zero due to limited information, except
for �NN , which is fixed at �1.65 [? ]. For simplicity in the computations, we use a single cuto↵ ⇤h = 550 MeV for
all hadronic form factors and ⇤loop = 300 MeV with g⇤⇤̄ = 2 to reproduce the data.

N N⇤(1535, 1/2�) N⇤(1650, 1/2�) N⇤(1895, 1/2�) Ps(2071, 3/2
�)

M � i�/2 [MeV] 938� i0 1504� i55 1668� i28 1673� i67 1801� i96 1912� i54 2071� i7

g�NN(⇤) �1.47 1.4 + i2.2 4.1� i2.7 4.5 + i5.2 2.1 + i1.8 0.9� i0.2 0.14 + i0.2

TABLE II: Relevant nucleon coupling constants for the t- and u-channel contributions [? ? ].

In panel (a) of Fig. ??, we present the full calculations for the total cross-sections � ⌘ �pp̄!�� as functions of the
center-of-mass energy W , showing each contribution separately. The experimental data are taken from Ref. [? ? ? ].
The ground-state nucleon (N) contribution is significant near the threshold, exhibiting a shoulder-like structure, while
the nucleon-resonance (N⇤) contribution becomes stronger as W increases. As expected, the scalar and tensor mesons
f0,2 are responsible for the bump structure around W ⇡ 2.2 GeV. Additionally, there is a small but finite contribution
from the ⌘ in the s channel. Interestingly, the nontrivial structure around W = 2.25 GeV is well reproduced by the
interference between the cusp e↵ect from the ⇤⇤̄-loop contribution and other components. To clarify this observation,
in panel (b), we show the total cross-section with and without the cusp e↵ect. We also test the impact of the ⌘
contribution at W ⇡ 2.25 GeV, which fails to explain the nontrivial structure.

Following a similar approach to Refs. [? ? ? ], in panel (c), we attempt to reproduce the data without the ground-
state nucleon contribution by modifying the cuto↵ masses for the form factors, resulting in a fit-compatible with the
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(corresponding to T = Tf0 + TN∗(1535)), with fixed cutoff
parameters !f0 and !N∗(1535), we perform a χ2 fit (fit I) to
the total cross section data for p̄p → φφ [5]. There are a total
of 20 data points.

By constraining the value of the cutoff parameter !f0

between 0.6 and 1.2 GeV and !N∗(1535) around 3.0 GeV based
on the results of Ref. [18], we obtain a minimal χ2/d.o.f. = 2.1
with !f0 = 0.6 GeV and !N∗(1535) = 3.05 GeV. The fit-
ted parameters are gf0p̄p gf0φφ = 0.45 ± 0.08, Mf0 = 2174 ±
3 MeV, and $f0 = 167 ± 27 MeV.

Second, instead of a scalar meson, we study the case
of a tensor meson f2 in the s channel and t- and u-
channel N∗(1535) resonance (corresponding to T = Tf2 +
TN∗(1535)), and we perform a second χ2 fit (fit II). In
this case, we get a minimal χ2/d.o.f. = 1.4 with !f2 =
0.65 GeV and !N∗(1535) = 3.05 GeV. The fitted parameters
are gf2p̄p gf2φφ = −0.12 ± 0.02, Mf2 = 2192 ± 4 MeV, and
$f2 = 177 ± 30 MeV.

Based on the value of the χ2/d.o.f., fit II is preferred to fit I.
It seems to indicate that the p̄p → φφ reaction is dominated by
the exchange of a strange tensor meson with quantum number
JPC = 2++ in the s-channel, in agreement with the study of
Ref. [5]. In addition, a partial-wave analysis of the π−p →
φφn reaction shows that the φφ system is dominant by two
JPC = 2++ states [9], one an S wave and the other a D wave.
The mass of the S-wave state is M = 2160 ± 50 MeV, with
a decay width $ = 310 ± 70 MeV. The mass is in agreement
with our fitted result for the tensor meson.

Next, we show the corresponding fitted results for the total
cross sections in Fig. 2, in comparison with the experimental
data from Ref. [5]. From Fig. 2, one can see that the
experimental total cross section can be described fairly well by
including the contributions from both the N∗(1535) resonance
and the scalar meson f0 or tensor meson f2. The contributions
from N∗(1535) resonance dominates above W = 2.25 GeV,
while the bump structure around W = 2.2 GeV can be well

FIG. 2. Total cross sections for the p̄p → φφ reaction. The
experimental data are taken from Ref. [5]. The curves are the
contributions from s-channel f0 and f2, t- and u-channel N∗(1535)
resonance, and the total results of fits I and II.

FIG. 3. Differential cross sections for p̄p → φφ reaction. The
curves are the contributions from s-channel scalar meson f0 (dash-
dotted) and tensor meson f2 (dotted), t- and u-channel N∗(1535)
resonance (dashed), and the total results of fit I (dash-dot-dotted) and
fit II (solid).

reproduced by considering the contributions from the strange
mesons f0 and f2.

048201-3

J. J. Xie et al, Phys. Rev. C 90, 048201 (2014) 
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• Total cross section cannot distinguish whether it includes both  or  only.


• We will further discuss the two cases in detail later.
N + N* N*

N + N* Without N

Ⅲ. Numerical results - Total Cross Section
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Ⅲ. Numerical results - Differential Cross Section
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Fit1 = ae−b|t|

Fit2 = a′￼e−b′￼|t| + c′￼e−d′￼|t|

• The curve shapes change concavely due to the N contribution as  increase.


• To make the current numerical results more accessible, we fit the curves in the region below .
W

| t | < 0.2GeV2
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FIG. 6: (Color online) Spin-density matrix elements (SDMEs) ⇢�00,10,1�1 as functions of cos ✓ for the Adair, helicity, and
Gottfried-Jackson (GJ) frames for � = (0, 4), which stands for the �4 helicity (±1,0), at W = 2.2 GeV.

W = 2.2 GeV. According to Eq. (??), each SDME approximately follows specific helicity-flip patterns:

⇢000 / |M01|2 + |M0�1|2, ⇢400 / |M00|2,
⇢010 /

�
M11M⇤

01 +M1�1M⇤
0�1

�
, ⇢410 / M10M⇤

00,
⇢01�1 /

�
M11M⇤

�11 +M1�1M⇤
�1�1

�
, ⇢41�1 / M10M⇤

�10, (13)

where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical
results shown in Fig. ?? and being understood by Eq. (??), we clearly observe that the single (��34 = 1) and double
(��34 = 2) helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0
component remains finite [? ]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-

W [GeV] a b a0 b0 c0 d0

2.1 4.99 0.05 3.99 0.05 1.00 0.05

2.2 4.72 0.50 3.80 1.47 1.04 �1.33

2.3 2.21 0.82 2.15 1.36 0.12 �2.10

TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.

Ⅲ. Numerical results - dσ/dt
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• Each SDME approximately follows 
specific helicity-flip patterns.
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FIG. 6: (Color online) Spin-density matrix elements (SDMEs) ⇢�00,10,1�1 as functions of cos ✓ for the Adair, helicity, and
Gottfried-Jackson (GJ) frames for � = (0, 4), which stands for the �4 helicity (±1,0), at W = 2.2 GeV.
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where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical
results shown in Fig. ?? and being understood by Eq. (??), we clearly observe that the single (��34 = 1) and double
(��34 = 2) helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0
component remains finite [? ]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-
conserving e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen
from ⇢01�1. Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role
in the total cross-section.

W [GeV] a b a0 b0 c0 d0

2.1 4.99 0.05 2.50 0.05 2.50 0.05

2.2 4.71 0.49 3.79 1.47 1.05 �1.32

2.3 2.20 0.81 2.15 1.36 0.13 �2.06

TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.
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(b) W = 2.2 GeV
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(c) W = 2.3 GeV
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FIG. 4: (Color online) (a-c) Angular-dependent di↵erential cross-sections d�/d cos ✓ as functions cos ✓ at di↵erent W . (d-f)
The same as functions of W for the di↵erent angles.

in the region below |t| < 0.2GeV2. The corresponding fit parameters are listed in Table III. To better understand
the overall t-dependence of the cross-section, we plot it as a function of both �t and W . A bump structure appears
around W ⇡ 2.2 GeV, indicating the contribution from the f0,2 mesons.

Now, we turn to the discussion of the spin-density matrix elements (SDMEs) as defined in Eq. (12). The numerical
results for ⇢�00,10,1�1 are plotted in Fig. 6 as functions of cos ✓ for the full calculation, shown across di↵erent kinematic
frames, namely, the Adair, helicity, and Gottfried-Jackson (GJ) frames, where � = (0, 4) represents the �4 helicity at
W = 2.2 GeV. According to Eq. (12), each SDME approximately follows specific helicity-flip patterns:

⇢000 / |M01|2 + |M0�1|2, ⇢400 / |M00|2,
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FIG. 5: (Color online) (a) Forward-scattering di↵erential cross-sections d�/dt as functions of �t for di↵erent W . (b) The same
as a function of �t and W .

8

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

Adair ⇢�00

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

Adair ⇢�10

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

Adair ⇢�1�1

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

Helicity ⇢�00

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

Helicity ⇢�10

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1
λ=0
λ=4

Helicity ⇢�1�1

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

GJ ⇢�00

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

GJ ⇢�10

-1 -0.5 0 0.5 1
cosθ

-1

-0.5

0

0.5

1

λ=0
λ=4

GJ ⇢�1�1
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Gottfried-Jackson (GJ) frames for � = (0, 4), which stands for the �4 helicity (±1,0), at W = 2.2 GeV.
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where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical results
shown in Fig. 6 and being understood by Eq. (13), we clearly observe that the single (��34 = 1) and double (��34 = 2)
helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0 component
remains finite [25]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-conserving
e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen from ⇢01�1.
Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role in the total
cross-section.

W [GeV] a b a0 b0 c0 d0

2.1 4.99 0.05 2.50 0.05 2.50 0.05

2.2 4.71 0.49 3.79 1.47 1.05 �1.32

2.3 2.20 0.81 2.15 1.36 0.13 �2.06

TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.
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(b) W = 2.2 GeV
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(c) W = 2.3 GeV
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FIG. 4: (Color online) (a-c) Angular-dependent di↵erential cross-sections d�/d cos ✓ as functions cos ✓ at di↵erent W . (d-f)
The same as functions of W for the di↵erent angles.

in the region below |t| < 0.2GeV2. The corresponding fit parameters are listed in Table III. To better understand
the overall t-dependence of the cross-section, we plot it as a function of both �t and W . A bump structure appears
around W ⇡ 2.2 GeV, indicating the contribution from the f0,2 mesons.

Now, we turn to the discussion of the spin-density matrix elements (SDMEs) as defined in Eq. (12). The numerical
results for ⇢�00,10,1�1 are plotted in Fig. 6 as functions of cos ✓ for the full calculation, shown across di↵erent kinematic
frames, namely, the Adair, helicity, and Gottfried-Jackson (GJ) frames, where � = (0, 4) represents the �4 helicity at
W = 2.2 GeV. According to Eq. (12), each SDME approximately follows specific helicity-flip patterns:
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where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical results
shown in Fig. 6 and being understood by Eq. (13), we clearly observe that the single (��34 = 1) and double (��34 = 2)
helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0 component
remains finite [25]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-conserving
e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen from ⇢01�1.
Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role in the total
cross-section.

W [GeV] a b a0 b0 c0 d0

2.1 4.99 0.05 2.50 0.05 2.50 0.05

2.2 4.71 0.49 3.79 1.47 1.05 �1.32

2.3 2.20 0.81 2.15 1.36 0.13 �2.06

TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.
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where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical results
shown in Fig. 6 and being understood by Eq. (13), we clearly observe that the single (��34 = 1) and double (��34 = 2)
helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0 component
remains finite [25]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-conserving
e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen from ⇢01�1.
Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role in the total
cross-section.
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TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.
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where the amplitude is defined as M�3�4 . Here, we define the notation ��34 = |�3 � �4|. From the numerical results
shown in Fig. 6 and being understood by Eq. (13), we clearly observe that the single (��34 = 1) and double (��34 = 2)
helicity-flip SDMEs become zero at cos ✓ = ±1, indicating helicity conservation. In contrast, the ��34 = 0 component
remains finite [25]. We also find that ⇢400 is not exactly unity at cos ✓ = ±1 due to finite helicity non-conserving
e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen from ⇢01�1.
Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role in the total
cross-section.

W [GeV] a b a0 b0 c0 d0

2.1 4.99 0.05 2.50 0.05 2.50 0.05

2.2 4.71 0.49 3.79 1.47 1.05 �1.32

2.3 2.20 0.81 2.15 1.36 0.13 �2.06

TABLE III: Parameters for the single (d�/dt = ae�b|t|) and double exponent (d�/dt = a0e�b0|t| + c0e�d0|t|) fits. All the
parameters are in the 1/GeV2 unit.

Δλ34 = |λ3 − λ4 | , 0 ≤ Δλ34 ≤ 2

• The particles produced in the reaction 
determine this spin difference, which 
helps in understanding the particles 
reaction mechanism.

Ⅲ. Numerical results - Spin-Density Matrix Element (SDME)
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FIG. 7: (Color online) Spin-density matrix elements (SDMEs) ⇢0,400 as functions of W and cos ✓ for the Adair, helicity, and
Gottfried-Jackson (GJ) frames.

e↵ects from the f2 and N⇤ contributions. As expected, the ��34 = 2 contribution is very small, as seen from ⇢01�1.
Notably, the shape of the SDMEs is primarily driven by the N contribution, which plays a dominant role in the total
cross-section.

In Fig. 7, we plot ⇢0,400 as functions of W and cos ✓ for the Adair, helicity, and Gottfried-Jackson (GJ) frames. The
energy dependence of the SDMEs is shown to be quite mild. At the same time, meson contributions, such as from
the f0, introduce a small but non-trivial structure around W = 2.2 GeV for helicity-conserving cases, i.e., � = 4
(��34 = 0). As expected, the ��34 = 0 contributions are significantly larger than those with ��34 = 1.

Finally, we turn to the discussion of polarization observables, which can provide valuable insight into reaction mech-
anisms by examining various combinations of �-meson polarizations. In panel (a) of Fig. 8, we present the numerical
results for polarized total cross-sections as functions of W for di↵erent combinations of �3 and �4 polarizations,
denoted as (✏�3 , ✏�4). The symbols ? and k indicate that the polarizations are, respectively, transverse and parallel
to the reaction plane, while � denotes the longitudinal polarization. It is evident from the Lorentz structure of the
invariant amplitudes in Eq. (2), it is clear that the amplitudes are sensitive to polarization and are reduced by certain
combinations.

The polarized total cross-sections show significant contributions from N and N⇤ for identical polarization combina-
tions, but these contributions decrease for di↵erent combinations. As described by Eq. (2), the f0 amplitude becomes
zero for the combinations (k,?) and (k,�), whereas the ⌘ amplitude remains non-zero only for (k,�). In contrast,
the f2 amplitude remains finite for both combinations. This pattern is illustrated in panel (a) of Fig. 8, showing the
bumps corresponding to f0,2 and ⌘, which suggests that meson signals can be enhanced by appropriately adding or
subtracting the contributions from di↵erent polarization combinations. This approach is tested in panel (b) of Fig. 8,
where the f0 and f2 contributions are more pronounced and better separated due to improved signal-to-background
ratios. In panel (c), we present the angular-dependent di↵erential cross-sections in the same manner as in panel (b)
for W = (2.1 � 2.3) GeV. The f2 and ⌘ contributions exhibit qualitatively flat curves near zero degrees, while the
f0 component shows distinctive angular dependence. Analyzing these polarized angular dependencies allows one to
isolate and study specific meson properties more e↵ectively.

As mentioned previously, Ref. [12–14] considered that the N⇤(1530) dominates the background of the present
reaction process, whereas we include more N⇤ and N contributions. To test these two di↵erent scenarios, we suggest

Ⅲ. Numerical results - Spin-Density Matrix Element (SDME)
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where we use the notation (D) for the double-helicity flip and the prime (0) indicates a different helicity combination.
We define an asymmetry characterized by the various combinations of the q-meson polarizations as follows:

Asymmerty ⌘
3fn3 n4 � 3fn 0

3 n
0
4

3fn3 n4 + 3fn 0
3 n

0
4

, (15)

where the q-meson polarizations are given by n3,4 = (k,?, �) and 3f ⌘ 3f/3 cos \.

IV. SUMMARY AND FUTURE PERSPECTIVES

We present a first estimate of the sensitivity of polarization observables to the 5 -meson exchanges in B channel and #/#⇤

exchanges in C and D channels and extend our predictions to the spin-density matrix elements for q and spin correlations between
two q. These results serve as a benchmark for the qq experiment at J-PARC, which proposes to measure for the first time the
spin observables, d00, and ⌃ in double q production in ?? reactions near threshold to explore the significant OZI rule violation
mechanism.

• By measuring asymmetries, the 
contribution of N and N* can be 
determined.

• Amplitudes are sensitive to 
polarization and are reduced by 
certain combinations.2 2.1 2.2 2.3 2.4 2.5

W [GeV]

0.4

0.8

1.2

1.6

Po
la

riz
ed

 σ
 [μ

b]

(∥,∥)
(⊥,⊥)
(⊙,⊙)
(∥,⊥)
(∥,⊙)
(⊥,⊙)f0

f2 η
2 2.1 2.2 2.3 2.4 2.5

W [GeV]

0

0.1

0.2

0.3

0.4

0.5

Po
la

riz
ed

 σ
 [μ

b]

(⊥,⊥) - (⊙,⊙)
(∥,⊥) + (∥,⊙)
(∥,⊙) - (∥,⊥)

f0

f2

η

-1 -0.5 0 0.5 1
cosθ

0.01

0.1

Po
la

riz
ed

 d
σ/

dc
os
θ 

[μ
b/

sr
]

f₀ at W = 2.1 GeV
f₂ at W = 2.1 GeV
η at W = 2.1 GeV
f₀ at W = 2.2 GeV
f₂ at W = 2.2 GeV
η at W = 2.3 GeV

-1 -0.5 0 0.5 1
cosθ

-0.2

0

0.2

0.4

0.6

As
ym

m
et

ry

(∥,∥) - (⊙,⊙) for N+N*
(∥,∥) - (⊙,⊙) for N*

W = 2.1GeV

ϵ∥

ϵ⊥
ϵ⊙

ϕ ϕ

p

p̄

Ⅲ. Numerical results - Polarization



Scattering length in  reactionπ−p → ϕn

15



16

I. Introduction & Ⅱ. Theoretical framework

PKNU-NuHaTh-2025

Study on the �-meson production via ⇡�p ! �n

Dayoung Lee ,
1, ⇤

K. P. Khemchandani ,
2, †

A. Mart́ınez Torres ,
3, ‡

and Seung-il Nam
1, §

1Department of Physics, Pukyong National University (PKNU), Busan 48513, Korea
2Departamento de Cı̂encias Exatas e da Terra, Universidade Federal de São Paulo,

Campus Diadema, Rua Prof. Artur Riedel, 275, Jd. Eldorado, 09972-270, Diadema, SP, Brazil
3Instituto de F́ısica, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

(Dated: January 10, 2025)

Keywords: �-meson production, pion beam, proton target, OZI rule,

I. INTRODUCTION

II. THEORETICAL FRAMEWORK

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(a) s channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

⇢, b1

(b) t channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(c) u channel

LPNB1± = igPNB1±N̄P�
±�5B1± + h.c.,

LV NB1± = gV NB1±N̄�
±Vµ�

µB1± + h.c.,

LPNB3± =
gPNB3±

MPs

N̄(@µP )�
±Bµ

3± + h.c.,

LV NB3± =
igV NB3±

MPs

N̄�5�
±FV µ⌫�

⌫Bµ
3± + h.c.,

LV BB = gV BBB̄�µ�5V
†
µB + h.c.,

LV V P =
gV V P

MP
✏µ⌫�⇢Fµ⌫

V F �⇢
V P + h.c.,

LABB = gABBB̄�µA†
µB + h.c.,

LAV P =
b

2
p
2
·A+

1µ

�p
2V µP��

(1)

s, u-channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(a) s channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(c) u channel

⇤
E-mail: ldyoung0421@pukyong.ac.kr

†
E-mail: kanchan.khemchandani@unifesp.br

‡
E-mail: amartine@if.usp.br

§
E-mail: sinam@pknu.ac.kr

Typeset by REVTEX

Feynman diagram and Effective Lagrangian

Scattering length

PKNU-NuHaTh-2025

Study on the �-meson production via ⇡�p ! �n

Dayoung Lee ,
1, ⇤

K. P. Khemchandani ,
2, †

A. Mart́ınez Torres ,
3, ‡

and Seung-il Nam
1, §

1Department of Physics, Pukyong National University (PKNU), Busan 48513, Korea
2Departamento de Cı̂encias Exatas e da Terra, Universidade Federal de São Paulo,

Campus Diadema, Rua Prof. Artur Riedel, 275, Jd. Eldorado, 09972-270, Diadema, SP, Brazil
3Instituto de F́ısica, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil

(Dated: January 7, 2025)

Keywords: �-meson production, pion beam, proton target, OZI rule,

I. INTRODUCTION

II. THEORETICAL FRAMEWORK

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(a) s channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

⇢, b1

(b) t channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(c) u channel

s, u-channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(a) s channel

⇡�
(k1)

p(k2)

�(k3)

n(k4)

p(⇤)

(c) u channel

N(1/2±)

LPNB1± = igPNB1±N̄P�
±B1± + h.c.,

LV NB1± = gV NB1±N̄�
±�5Vµ�

µB1± + h.c.,

iM1±
s = �gV NBgPNBū(k2)�
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±�5/✏
/qs +Ms

s�M2
s + i�sMs

�
±u(k4)

iM1±
u = �gV NBgPNBū(k2)�
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1.7 Effective range expansion
1.7.1 Amplitudes
One can compare this equation with another formula for the scattering amplitude,

f(E) =
1

k cot � � ik
. (32)

Using the definition,

s = 1 + 2ikf , s = e
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From this equation, we find for the scattering length a and effective range b as

a =

✓
2⇡

µv
+

⇤

2

◆�1

, b =
3

⇤
(36)

Note that the scattering length a changes its sign at the critical value (21). For v = �1,�0.5 fm2
, ⇤ =

4fm�1, the scattering lengths and effective ranges are (in units of of fm)

a(v = �1) = 1.4, a(v = �0.5) = �1.9; b = 0.75. (37)

in units of fm. Note that our convention for the scattering length is that a positive or negative a

corresponds to a repulsive or attractive interaction, respectively. However, that attraction is not too
strong to accommodate a bound state. When the attraction is strong enough to generate a (not too
deep) bound state, the scattering length turns positive.
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Scattering length, effective range

Scattering amplitude
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• Studying  interaction characteristics through scattering length.


• A channel to explore N resonances


• Calculating the interaction strength and characteristics of the  exotic state.

ϕN

Ps
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Ⅲ. Numerical results
Total Cross Section Differential Cross Section
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ū(k2)k1↵�
± /qu +Mu

u�M2
u + i�uMu

h
g↵µ � 1

3
�↵�µ � 2

3M2
u

q↵uq
µ
u +

q↵u�
µ
+ qµu�

↵

3Mu

i

⇥ (k3µ/✏� /k3✏µ)�5�
±u(k4) (3)

N N⇤
(1535, 1/2�) N⇤

(1650, 1/2�) N⇤
(1895, 1/2�) Ps(2071, 3/2

�
)

M � i�/2 [MeV] 938� i0 1504� i55 1668� i28 1673� i67 1801� i96 1912� i54 2071� i50(2024 PRD110 014026)
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TABLE I: Relevant nucleon coupling constants for the s- and u-channel contributions [? ? ].
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TABLE II: Relevant nucleon coupling constants for the s- and u-channel contributions [? ? ].
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TABLE III: Relevant meson coupling constants for the s-channel contributions.
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TABLE IV: Relevant meson coupling constants for the s-channel contributions.

III. NUMERICAL RESULTS

IV. SUMMARY AND FUTURE PERSPECTIVES
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• The total cross section of  reactions can be described in terms of the meson pole and baryon exchange 
diagrams.


• The nontrivial structure around  is well reproduced by the interference between the cusp effect form 
the -loop contribution and other.


•  was fitted using an single and double exponential function to make the current numerical results more 
accessible.


• SDME provide crucial information about the reaction mechanism and can serve as benchmarks for future 
experiments. 


• By analyzing the angular distributions of specific polarization combinations, it is possible to determine the 
contributions of mesons and baryons.


• To validating the theoretical predictions presented in this study, the experiment will be conducted at J-PARC.

p̄p → ϕϕ

W = 2.25GeV
Λ̄Λ

dσ/dt

p̄p → ϕϕ

π−p → ϕn
• Scattering length will be calculated to investigate the characteristics of the interaction.


• Total cross section and differential cross section are being calculated based on the experimental data.


• Scattering length will be calculated in the future.

Ⅳ. Summary



Thank you
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