Experiment and ImQMD comparison using Flow parameters of Xe + Sn @ 100 AMeV and Ni + Ni @ 52 AMeV

2025 CENuM Workshop in Jeju

2025.1.16.木 Seon ho Nam

Physics Motivation

Nuclear symmetry energy

$$\begin{split} E(\rho,\delta)/A &= E(\rho_n = \rho_p) + E_{sym}(\rho)\delta^2\\ \text{Iso scalar} & \text{Iso vector} \end{split}$$

$$E_{sym}(\rho) = \frac{1}{2} \frac{\partial^2 E}{\partial \delta^2} \sim E(\rho_{\text{pure neutron}}) - E(\rho_{\text{symmtric}})$$

$$\rho = \rho_n + \rho_p, \quad \delta = (\rho_n - \rho_p)/\rho$$

$$E_{sym}(\rho) = S + \frac{L_{sym}}{3} \left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18} \left(\frac{\rho}{\rho_0}\right)$$

Collective flow

Fourier expansion of azimuthal distribution

$$\frac{dN}{d(\phi - \psi_r)} = \frac{N_0}{2\pi} \left(1 + \sum_{n \ge 1} 2v_n \cos(\phi - \psi_{rp}) \right)$$

 v_1 : Direct flow, v_2 : Elliptic flow

$$v_1 = \langle \cos(\phi - \psi_r) \rangle = \left\langle \frac{p_x}{p_t} \right\rangle$$

$$v_2 = \langle \cos 2(\phi - \psi_r) \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_t^2} \right\rangle$$

Data sets Experiment and ImQMD with 2 parameter sets

INDRA 4th campaign at GSI (1998-1999)

(INDRA-ALADIN collaboration)

129,124 Xe + 124,112 Sn @100MeV/u

E789 at GANIL (2019.4->5) (INDRA-FAZIA collaboration)

64,58 Ni + 64,58 Ni @52MeV/u

ImQMD with 2 Skyrme parameters

Para	$ ho_0$	E_0	<i>K</i> ₀	<i>S</i> ₀	
SLy4	0.160	-15.97	230	32	
SkM*	0.160	-15.77	217	30	
	K _{sym}	m * /m	$m_n * / m$	$m_p * / m$	
SLy4	-120	0.69	0.68	0.71	
SkM*	-156	0.79	0.82	0.76	

Impact parameter windows

INDRA Camp 4th	IW1 (0.21 < b0 < 0.42)
E789	EW1 (0.03 < b0 < 0.4)

Reaction plane reconstruction and correction factor

Transverse momentum method

$$\mathbf{Q} = \sum_{\substack{i \neq poi}}^{N} \omega_i (\mathbf{p}_t^i + m_i \mathbf{v}_b)$$

$$\mathbf{v}_b = \frac{\mathbf{p}_t}{m_{sys} - m_{poi}} \quad \omega_i = Z_i (y_{cm} > 0)$$
$$= -Z_i (y_{cm} < 0)$$

64Ni + 64Ni 52AMeV Z:2 A:0

 $< y_{cm}^{0} > -0.909 -0.727 -0.545 -0.364 -0.182 0.000 0.182 0.364 0.545 0.727 0.909$ T y_{cm}^0 windows

Parameter b : Slope of Direct flow

 $y_{cm}^{0} = y_{cm} / y_{cm}^{P} (y_{cm} > 0)$ $y_{cm} / y_{cm}^{T} (y_{cm} < 0)$

 $p_t^0 = \frac{p_t/A}{2p_t^P/(A_P + A_T)}$

Parameter b : Offset of Elliptic flow

8/12 PHYSICAL REVIEW C 94, 011601(R) (2016)

	K _{sym}	m * /m	m _n * /m	m _p * /m
SLy4	-120	0.69	0.68	0.71
SkM*	-156	0.79	0.82	0.76

 $\mathbf{R}_{n/p} = Y_{\mathrm{CI}}(n)/Y_{\mathrm{CI}}(p) \quad \mathbf{C}$

CI proton & neutr

$$DR(n/p) = \frac{R(n/p, CI, 124)}{R(n/p, CI, 112)} \qquad f_I = 0.3(m *_n < m)$$

ron : 1 < A < 5
$$f_I = -0.3(m *_n > m)$$

Exp

	K _{sym}	m * /m	$m_n * / m$	m _p * /m
SLy4	-120	0.69	0.68	0.71
SkM*	-156	0.79	0.82	0.76

<mark>∳</mark> SkMs

64 Ni + 64 Ni @ 52MeV/u

EW1 p_t^0 vs v_1 Slope

Slope of direct flow

 124 Xe + 124 Sn@100MeV/u With correction factor

IW1 p_t^0 vs v_1 Slope

	K _{sym}	m * /m	$m_n * / m$	m _p * /m
SLy4	-120	0.69	0.68	0.71
SkM*	-156	0.79	0.82	0.76

64 Ni + 64 Ni @ 52MeV/u

EW1 p_t^0 vs v_2 Offset $4 \to Exp$ $4 \to SLy4$ $4 \to SkMs$

Offset of Elliptic flow

 124 Xe + 124 Sn@100MeV/u With correction factor

124 Xe + 124 Sn@100MeV/u

With correction factor

Summary

- 1. Compare Experimental and ImQMD with 2 Skyrme parameters data using v_1 slope and v_2 offset.
- clear difference and also models can not predict experimental results.
- 3. V_1 of Xe+Sn @ 100 AMeV from two parameter sets are not show specific result especially at low p_t^0 regions.
- and this are affected by N/Z ratio of fragments.

2. v_1 and v_2 results of two model calculation using Ni+Ni @ 52 AMeV are not show

difference relate to N/Z of fragment and also non of model predict experimental

4. v_2 from 2 parameters of Xe+Sn @ 100AMeV are represent clearly differences

Conclusion

- 1. Direct flow seems not sensitive to iso-vector effective mass difference.
- 2. Elliptic flow is more sensitive to iso-vector effective mass splitting of proton and neutron but direct flow is not in this energy region.
- 3. Effective mass of proton much heavier than value of SkM* at over $E_k \sim 55 MeV/u$ but little heavier below $E_k \sim 55 MeV/u$.
- 4. Effective mass of neutron is lighter than SkM* and heavier than SLy4 at below $E_k \sim 55 MeV/u$.

Slope of Direct flow

64 Ni + 64 Ni @ 52MeV/u

124 Xe + 124 Sn@100MeV/u With correction factor

0.1

^{64,58}Ni +^{64,58}Ni@52MeV/u

Ni58+Ni58 @ 52 MeV/u	Ni64+Ni64 @ 52 MeV/u	Ni58+Ni64 @ 52 MeV/u	Ni64+Ni58 @ 52 MeV/u		
χ _s =0.390 α=1.169 ρ=-0.175	χ_=0.219 α=1.195 ρ=-0.066	χ _s =0.345 α=1.165 ρ=-0.147	χ_=0.322 α=1.169 ρ=-0.122		
χ=0.607	χ=0.320	χ=0.528	χ=0.486		
•••••	••••	•••••	•••••		
<cos∆φ> : 0.51 ± 0.019</cos∆φ>	<cos∆φ> : 0.29 ± 0.143</cos∆φ>	<cos∆φ> : 0.45 ± 0.014</cos∆φ>	<cos∆φ> : 0.42 ± 0.002</cos∆φ>		
<cos2∆φ> : 0.24 ± 0.016</cos2∆φ>	<cos2∆φ> : 0.14 ± 0.062</cos2∆φ>	<cos2∆φ> : 0.20 ± 0.010</cos2∆φ>	<cos2∆φ> : 0.19 ± 0.003</cos2∆φ>		
58Ni+58Ni @ 52 MeV/u	64Ni+64Ni @ 52 MeV/u	58Ni+64Ni @ 52 MeV/u	64Ni+58Ni @ 52 MeV/u		
χ_=0.208 α=1.141 ρ=-0.044	χ _s =0.212 α=1.150 ρ=-0.049	χ _s =0.203 α=1.142 ρ=-0.048	χ _s =0.217 α=1.159 ρ=-0.052		
χ=0.300	χ=0.307	χ=0.295	χ=0.315		
SkMs	SkMs	SkMs	SkMs		
<cos∆φ> : 0.27 ± 0.654</cos∆φ>	<cos∆φ> : 0.27 ± 0.591</cos∆φ>	<cos∆φ> : 0.26 ± 0.642</cos∆φ>	<cos∆φ> : 0.28 ± 0.530</cos∆φ>		
<cos2∆φ> : 0.11 ± 0.206</cos2∆φ>	<cos2∆φ> : 0.12 ± 0.201</cos2∆φ>	<cos2∆φ> : 0.11 ± 0.204</cos2∆φ>	<cos2∆φ> : 0.12 ± 0.193</cos2∆φ>		
58NI+58NI @ 52 MeV/u	64Ni+64Ni @ 52 MeV/u	58Ni+64Ni @ 52 MeV/u	64Ni+58Ni @ 52 MeV/u		
χ_=0.214 α=1.152 ρ=-0.053	χ _s =0.210 α=1.146 ρ=-0.053	χ _s =0.217 α=1.154 ρ=-0.059	χ _s =0.204 α=1.126 ρ=-0.050		
χ=0.311	χ=0.306	χ=0.317	χ=0.296		
SLy4	SLy4	SLy4	SLy4		
*****		*****	*****		
<cos∆φ> : 0.28 ± 0.550</cos∆φ>	<cos∆φ> : 0.27 ± 0.590</cos∆φ>	<cos∆φ> : 0.28 ± 0.516</cos∆φ>	<cos∆4> : 0.26 ± 0.688</cos∆4>		
<cos2∆φ> : 0.12 ± 0.195</cos2∆φ>	<cos2∆φ> : 0.11 ± 0.200</cos2∆φ>	<cos2∆φ> : 0.12 ± 0.189</cos2∆φ>	<cos2∆4> : 0.10 ± 0.203</cos2∆4>		
$0 \rightarrow \pi$ [rad]					

 $0 \rightarrow \pi$ [rad]

129,124 Xe + 124,112 Sn@100MeV/u

Ext. : extended Skyrme MDI

Stand. : standard Skyrme MDI

$55 \text{ MeV/A} = p_t^0 \simeq 1.5 \text{ for Xe} + \text{Sn}@100 \text{AMeV}$

TABLE II. The parameters used in the calculations corresponding to $K_0 = 230$ MeV, $m_s^*/m = 0.77$, $S_0 = 32$ MeV, and different values of L and f_I . The parameters α , β , A_{sym} , B_{sym} are in MeV. \tilde{C}_0 and \tilde{D}_0 are fm³/GeV.

$T_I = 0.3$	$(L = 46, f_I = -0.3)$	$(L = 100, f_I = 0.3)$	$(L = 100, f_I = -0)$
	-236.58	(-265.78)	
	163.95	(194.93)	
	1.26	(1.22)	
08.44)	58.57 (62.73)	14.41 (25.32)	-10.67 (-20.40
103.69)	-30.52 (-35.38)	-10.25 (-20.34)	38.72 (47.96)
-2.08×10^{-3})	0.37 (1.00)	$-7.92 \times 10^{-4} (-2.08 \times 10^{-3})$	0.37 (1.00)
.00)	-0.37 (-1.00)	0.37 (1.00)	-0.37 (-1.00)

 129 Xe + 124 Sn @ 100MeV/u

 124 Xe + 112 Sn @ 100MeV/u

Concavity of Direct flow

64 Ni + 64 Ni @ 52MeV/u

124 Xe + 124 Sn@100MeV/u

Curvature of Elliptic flow

64 Ni + 64 Ni @ 52MeV/u

124 Xe + 124 Sn@100MeV/u

