Modification factor of $J/\psi \& \psi(2S)$

Gyeonghwan Bak, Dong Ho Moon, Hyunchul Kim, Piljun Gwak, Hanseul Lee, Junhu Seo (Chonnam National University) Soohwan Lee, Junseok Lee (Korea University)

Introduction

- Goal : measure modification factor of prompt and nonprompt J/ ψ & $\psi(2S)$ and also double ratio $\psi(2S)$ to J/ ψ in 2018 PbPb collision
- Manpower
 - Gyeonghwan Bak, Dong Ho Moon, Hyunchul Kim, Piljun Gwak, Hanseul Lee, Junhu Seo (CNU)
 - Soohwan Lee, Junseok Lee (KU)
- Motivation
 - The last result is still from HIN-16-025 (2015 PbPb data)
 - precision measurement with more statistics(1.61 nb^{-1})
- Direct measurement of R_{AA} for $\psi(2S)$

Introduction

- ATLAS
 - $\psi(2S)$ to J/ψ double ratio for prompt and nonprompt
- ALICE
 - Inclusive $\psi(2S)$ in low-p_T bins
- CMS can separate prompt and nonprompt $\psi(2S)$ by 2-Dimensional fit

$\psi(2S)$ Results

$\psi(2S)$ Raa vs pt

• The R_{AA} values seem to be increasing as increasing p_T for |y| < 1.6 but flat in 1.6 < |y| < 2.4• Maybe increasing lower p_T : hint of regeneration effect

CMS

$\psi(2S)$ RAA VS <NPart>

• R_{AA} show the strong dependence on centrality in mid rapidity, while looks flat in forward and lower pT • Nonprompt $\psi(2S)$ R_{AA} are measured directly for the first time with sizable uncertainties

Compare to previous results

- R_{AA} values of prompt $\psi(2S)$ looks compatible with previous results
- R_{AA} values of lowest p_T in forward rapidity slightly larger than ALICE result

Compare to previous results

- R_{AA} values of prompt $\psi(2S)$ looks compatible with previous results
- the previous measurements

• R_{AA} measurements are possible due to larger statistics in the region where presented by the upper limits in

J/ψ Results

J/ψ RAA VS PT

- lowest bin
- The nonprompt values flat in both rapidity region

CMS

• The prompt R_{AA} values seem to be increasing as increasing p_T for |y| < 1.6 but flat in 1.6 < |y| < 2.4 except

J/ψ RAA VS < NPart>

• The prompt and nonprompt R_{AA} show the strong dependence on centrality in both rapidity region

Compare to previous results

• The prompt R_{AA} values of J/ ψ looks compatible with previous results from HIN-16-025 within error bar

Compare to previous results

• The R_{AA} values vs. $\langle N_{Part} \rangle$ are different from previous results

Double Ratio Results

Gyeonghwan Bak

Double Ratio vs p_T

- The double ratio values are compatible with ALICE and previous results
- Values look flat or slightly increasing as increasing p_T

CMS

15

Double Ratio vs p_T

• Observed double ratio at 3.5 < p_T < 6.5 reaches to 1, which means that the $\psi(2S)$ is not suppressed or indicates the regenerated

Double Ratio vs <N_{part}>

• Compatible with other results and observed same trend of ATLAS measurement but the result of nonprompt indicates there is tension each other

Double Ratio vs <N_{part}>

• At the forward region, the results are agreed with previous measurement and observed regeneration effect in more central events

Summary and to do

- Still trying to understand the meaning of our observation
- Ongoing to get systematic uncertainties for J/ψ
- Keep studying with finer bins for J/ ψ R_{AA} than HIN-16-025

Backup

Nonprompt fraction of $\psi(2S)$

2024. 9. 30.

Nonprompt fraction of J/ ψ

Compare with BPH-10-014 results

2024. 9. 30.

Compare with l_{ψ} efficiency cut results

• $N_{pass} = f \cdot N_{total} \cdot \epsilon_{NP} + (1 - f) \cdot N_{total} \cdot \epsilon_{PR}$

•
$$f = \frac{N_{pass} - N_{total} \epsilon_{PR}}{N_{total} (\epsilon_{NP} - \epsilon_{PR})}$$

Compare with $l_{I/\psi}$ efficiency cut results

Compare with $l_{I/\psi}$ efficiency cut results

Cross section

2024. 9. 30.

Cross section

