KU CMS Meeting

Status report & Dstar production in PbPb collision at CMS **Junseok Lee**

L1 Trigger

- Requested new seeds to respond to 2024 condition within given bandwidth
 - ppRef rate & efficiency [link] \bullet
 - L1_DoubleMu0_SQ \bullet
 - L1_DoubleMu2 \bullet
 - L1_DoubleMu2_SQ \bullet
 - PbPb rate & efficiency [link] (by Bayu) \bullet
 - L1_SingleMu0_Centrality_40_100_BptxAND \bullet
 - L1_SingleMu0_Centrality_30_100_BptxAND \bullet
 - L1_SingleMuOpen_Centrality_30_100_BptxAND \bullet
- All requested seeds from Dilepton have been added to the latest menu \bullet
 - JIRA <u>https://its.cern.ch/jira/browse/CMSLITDPG-1314</u> (PbPb)
 - JIRA https://its.cern.ch/jira/browse/CMSLITDPG-1207 (ppRef)

L1T DQM

- Presentation in the last HI L1T meeting : [link] \bullet
- \bullet
 - \bullet
 - Confirmed by TSG \bullet
- DQM task will be over if DQM timing plot is drawn well with new seeds

GOAL : Modify the L1T Online Timing plot code to properly display according to the Heavy lon bunch spacing (50ns)

Propose new trigger L1_LastBunchInTrain_50ns & L1_FirstBunchInTrain_50ns only used for L1T DQM (not fed by HLT)

Analysis Motivation

- D^* meson has exclusive decay channel \bullet
 - Clean and distinctive decay channel $(D^{*+} \rightarrow D^0 \pi^+, BR = 67.7 \pm 0.5\%)$ •
 - Give a small modification to existing framework ullet
- D^* meson has a spin of 1 while the D^0 has a spin of 0 ullet
 - Sensitive to different angular momentum and polarization effects ullet

Analysis Motivation

- ALICE published Prompt D⁰, D⁺ and D^{*+} production in Pb-Pb collision at $\sqrt{S_{NN}}$ = 5.02 TeV [1] in 2021
 - R_{AA} and flow measurements on mid-rapidity (|y| < 0.5) in central (0-10 %) and semi-central (30-50 %) ullet
 - Covering p_T up to 36 or 50 GeV
- CMS detector can provide wide rapidity coverage and large statistics at high p_{T}
 - This can be extended to where ALICE doesn't cover
 - Expect complementary result

Analysis stratgy

- Dstar is reconstructed via hadronic channel $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ (+ charge conjugate) \bullet
- Reconstruct D^0
 - Weak decay ($c\tau$ is few hundred μm) \bullet
 - Decay topology of produced D0 with BDT selection \bullet
- Reconstruct D^*
 - Same decay topology of the produced D^0 (strong decay) ullet
 - Combining D^0 candidates with tracks lacksquare
 - Exploiting BDT to maximize signal-to-background ratio

Observables

- Nuclear modification factor R_{AA} \bullet
 - Direct comparison to baseline \bullet
 - Run3 ppRef data will be available soon ●
- Flow $(v_2, v_3 ..)$ ullet
 - Probing initial condition geometry of the collision \bullet
 - Sensitivity to transport properties ullet
- Polarization
 - Light vector meson ($J^P = 1^-$) ullet
 - Testing polarization Induced by vorticity in non-central heavy-ion collision lacksquare

Analysis plan

- Feasibility test (before going to CERN)
 - Reconstruct D^* with existing framework
 - BDT training & optimization (on-going)
 - Raw yield signal extraction
- Further study (coming back from CERN)
 - Acceptance & efficiency study for correction
 - Systematic studies