

Double D meson analysis with CMS pPb data

Soohwan Lee (Korea U.)

D-D analysis

- Heavy flavor correlation
- Double D0 \leftrightarrow double J/ψ for DPS study • in pPb
 - Provide precision measurement of cross correlation in higher pT compared to LHCb result in mid rapidity
 - Model constraint (fwd-mid-bkwd)
- CADI created with HIN-24-012

Correction method validation

- When applied no BDT, single D0 efficiency correction works
 - pre-approval comment from Zhen hu, no need for dedicated SPS, DPS sample for yield correction

4.22 nb⁻¹ (8.16 TeV)

Gen

MC DŪ

|y| <1

0.8

1.0

 $\Delta \phi / \pi$

Nonminal Method

4 < p_T < 30 GeV

• Debugging problem..

From pre approval, nominal BDT selection

0.4

0.6

0.2

(μ/φ∇)N/Np

400

300

200

100

8.0

1e3

CMS *Preliminary*

New BDT training

- Aiming for better bias control
 - Training using decay geometry variable as well as D^0 kinematics

Theory prediction and data

3.0 pythia sps p-p Correlation smearing from DPS p-Pb prediction 2.5 contribution $\sqrt{s} = 8.16 \,\mathrm{TeV}$ $(\phi p/\rho p)(\rho/\mu)$ 1.5 1.0 $-1.465 < y^* < 0.535$ • Extreme for same-signed D_0 $p_{\rm T} > 4 {\rm GeV}$ 1.0 0.5 $D^0\overline{D}^0$ sps integrated cross section in p-Pb [nb] dps 0.0 3.0 sps+dps 10^{6} --- pythia sps p-p p-Pb prediction LHCb p-Pb projection 2.5 $\sqrt{s} = 8.16 \,\mathrm{TeV}$ $\sqrt{s} = 8.16 \,\mathrm{TeV}$ 10^{5} 2.0 $(\pi/\sigma)(d\sigma/d\phi)$ 2 < |y| < 4 $-1.465 < y^* < 0.535$ $p_{\rm T} > 4 {\rm GeV}$ $3 < p_{\rm T} < 12 {\rm GeV}$ 1.5 $D^0\overline{D^0}$ backward D⁰D⁰ backward 10⁴ D^0D^0 forward forward 1.0 0.5 $D^0\overline{D^0}$ $D^0D^0 + \overline{D^0D^0}$ 0.0 0.6 0.7 0.3 0.4 0.5 0.8 0.9 1.0 0.1 0.2 0.0 ϕ/π

Theory prediction and data

- Correlation smearing from DPS contribution
 - Extreme for same-signed D₀

 $(1/N)dN/d(\Delta\phi/\pi)$

8.0

Theory prediction and data

- Qualitatively well matching with data/pred
 - Under construction!

- Comparison in fwd LHCb kinematics and CMS mid rapidity
 - Higher pT threshold for CMS advantage for clearer signal and smaller FF scale uncertainty

DPS with nPDF modification

H. Shao, LHCB 2024

- DPS cross section to use transverse nPDF modification
- LHCb's forward and backward data favors non linear $T_{\rm AA}$ dependence ($a \neq 1$) for the transverse profile

- Many moving parameters for HF/quarkonia modification in medium
- HI research in Korea CMS focused on quarkonia
 - We had measured many $R_{\rm AA},\,v_2$ in pp, pPb, and PbPb

- Many moving parameters for HF modification in medium
- HI research in Korea CMS focused on quarkonia
 - We had measured many $R_{\rm AA}$, v_2 in pp, pPb, and PbPb
 - Other useful measurements with dileptons, HF correlation to help reconstruct full picture from the projected measurements

